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Rational Belief Revision
(Alchourrón et al., 1985)

https://arxiv.org/pdf/2206.06520
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Rational Belief Revision

The Space Needle is in Seattle
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Rational Belief Revision

Let go of old / adopt new
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Rational Belief Revision

Logically omniscient
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Unlearning   =   Rational Belief Revision
Let go of oldLogically omniscient

Boundedly rational

Open problems!



Is unlearning really belief revision?
Isnʼt unlearning about…
● Preventing data leakage?
● Adversarial robustness?
● Content filters? (Cooper et al., 2024)

“we coin this approach as knowledge unlearning since we are more focused on 
forgetting specific knowledge represented by sequences of tokensˮ                      
(Jang et al., 2022)

“changing one fact should cause rippling changes to the modelʼs related beliefsˮ 
(Zhong et al., 2023)
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Rest of the talk

13

Unlearning   =   Rational Belief Revision
Open problems!



12 Big Problems
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TMLR 2024



Picking three of them…
● Unclear scope of individual edits
● Lack of context for requested edits
● Competing channels for uncertainty
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● Letʼs say you want to unlearn who 
was the PM of the UK in 2020

● …what else changes?
● How many men have been PM?
● Who was deputy PM in 2020?

1. Unclear scope
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(Mitchell et al., 2022)
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We have to move beyond forget/retain sets
● There are desirable ripple effects
● Ripple effects highly subjective
● Some model editing papers reflect this
● Unlearning papers do not (to my knowledge)



● LLMs learn slower on surprising claims    
(Betz and Richardson et al., 2023)

● LLMs “learn what to trustˮ            
(Krasheninnikov et al., 2023)

● Why should LLMs trust plain falsehoods 
with no source?

Big Ben is not in London

2. Lack of context
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ChatGPT
● Need to control model trust in inputs, for 

prompting (Wallace et al., 2024) and unlearning

https://arxiv.org/pdf/2206.06520
https://arxiv.org/pdf/2206.06520
https://arxiv.org/pdf/2206.06520


Prompt: “Is Beyoncé's last album Cowboy Carter?ˮ

3. Competing channels for uncertainty
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Scenario 1 “Yesˮ 
       (with 95% probability)

Scenario 2 “Yes, I am 95% sure of it.ˮ 
       (with 100% probability) 

Unlearning lowers confidence in a claim to a 
state of appropriate uncertainty

Probabilistic or textual uncertainty?



3. Competing channels for uncertainty
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Token Probabilities

Picture gets fairly complicated…

Semantic Entropy

Epistemic MarkersToken Probabilities



Not well-defined → methods & evals suffer
● Unclear scope

→ no ripple effect evals
● Lack of context 

→ why easily fit to contextless falsehoods?
● Competing channels for uncertainty

→ how do we reach appropriate uncertainty?
● …nine more problems in the paper!
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Why unlearn?
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Why unlearn?
Could be a uniquely effective tool!
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“‘Machine unlearning’ can help to remove 
certain undesirable capabilities”



Thank You!
Contact Info:
Peter Hase
phase@stanford.edu
https://peterbhase.github.io  
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Appendix - Papers
● 2017 Ethical Challenges in Data-Driven Dialogue Systems
● 2022 Knowledge Unlearning for Mitigating Privacy Risks in Language Models
● 2023 Analyzing Leakage of Personally Identifiable Information in Language Models
● 2023 Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks
● 2023 Whoʼs Harry Potter? Approximate Unlearning in LLMs
● 2023 Unlearn What You Want to Forget: Efficient Unlearning for LLMs
● 2024 Do Unlearning Methods Remove Information from Language Model Weights?
● 2024 Rethinking Machine Unlearning for Large Language Models
● 2024 Eight Methods to Evaluate Robust Unlearning in LLMs
● 2024 The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
● 2024 Fundamental Problems With Model Editing: How Should Rational Belief Revision Work in LLMs?
● 2024 Machine Unlearning Doesnʼt Do What You Think: Lessons for Generative AI Policy, Research, and Practice
● 2025 Open Problems in Machine Unlearning for AI Safety
● 2025 Existing Large Language Model Unlearning Evaluations Are Inconclusive
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