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Thesis Statement

e Language models are getting better at many tasks

e Butwe do not know their internal reasoning processes

e And individual behaviors are hard to manipulate

e The main goals of work are to develop and evaluate tools for:

1. Explaining why language models produce the outputs they do
2. Exercising fine-grained control of language model behaviors



Language Models
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Language Models are increasingly
capable and general systems
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Language Models
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Improving LLM safety:

Model Pretraining

Model Deployment
Sociotechnical Challenges
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Improving LLM safety:

Model Pretraining

Model Deployment
o Interpretability
o Fine-grained Control

o Deleting Sensitive Info
Sociotechnical Challenges
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Definitions

e A modelisinterpretable if we can form accurate beliefs about how it works
e “How it works” = causal chains of events that lead to model outputs

= UNC
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Why Interpretability?

e We evaluate models with test data > accuracy
e But can we verify their reasoning?

REASONING EXTERNAL
PROCESS ALIGNS l;ilz)s(;%l;g\;g SYMPTOMS OF
WITH HUMAN MODEL BEHAVIOR
REASONING TRUSTWORTHY ARE TRUSTWORTHY
N\
USER OBSERVES USER OBSERVES
. (INTERPRETATION/ (TRUSTWORTHY .
Exp lanation EXPLANATION OF) EVALUATION OF) Testing
REASONING PROCESS MODEL BEHAVIOR
Y Y
\
USER GAINS USER GAINS
INTRINSIC TRUST EXTRINSIC TRUST
& )(Jacovi et al., 2020)
Works as intended Works as intended
. —_N
in general on test cases M UNC
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Why Interpretability?

&@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE Exi';pl‘? adaplteczl(l;rzozm
araju et al.
MODEL DECIDE TO PREDICT THEM AS HIGH RISK? a J ( )
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Why Interpretability?

Example adapted from

Lakkaraju et al. (2022)

@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE
MODEL DECIDE TO PREDICT THEM AS HIGH RISK?

T don't know, but the model's accuracy on this group is 90%. @

Vs...
1 |[UNC
12 l'_"— NLP
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Why Interpretability?

Example adapted from
Lakkaraju et al. (2022)

@

k@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE
MODEL DECIDE TO PREDICT THEM AS HIGH RISK?

Goop QUESTION! IT LOOKS LIKE THE MODEL PREDICTED THESE INDIVIDUALS
AS HIGH RISK MOSTLY BECAUSE THEY WERE SHMOKERS BUT ALSO BECAUSE
THEY LIVE IN LARGE CITIES. |'M HIGHLY CONTIDENT THESE ARE THE REASONS
BECAUSE THE EXPLANATIONS HAVE HIGH fiDELITY. HERE'S THE AVERAGE
FEATURE IMPORTANCE FOR THESE PEOPLE (HIGHER MEANS MORE IHPORTANT).

]
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Why Interpretability?

Example adapted from
Lakkaraju et al. (2022)

@

k@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE
MODEL DECIDE TO PREDICT THEM AS HIGH RISK?

Goop QUESTION! IT LOOKS LIKE THE MODEL PREDICTED THESE INDIVIDUALS
AS HIGH RISK MOSTLY BECAUSE THEY WERE SHMOKERS BUT ALSO BECAUSE
THEY LIVE IN LARGE CITIES. |'M HIGHLY CONTIDENT THESE ARE THE REASONS
BECAUSE THE EXPLANATIONS HAVE HIGH fiDELITY. HERE'S THE AVERAGE
FEATURE IMPORTANCE FOR THESE PEOPLE (HIGHER MEANS MORE IHPORTANT).

]
5
£
2
5
2
2
S
w
&
2

@ Wow, IT'S SURPRISING THAT WHETHER THE PERSON LIVES IS IN A CITY IS SO IMPORTANT.
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Why Interpretability?

Example adapted from
Lakkaraju et al. (2022)

@

k@ FOR WOMEN PREDICTED HIGH RISK FOR LUNG CANCER THAT ARE OLDER THAN 65, WHY DID THE
MODEL DECIDE TO PREDICT THEM AS HIGH RISK?

o
®

Goop QUESTION! IT LOOKS LIKE THE MODEL PREDICTED THESE INDIVIDUALS
AS HIGH RISK MOSTLY BECAUSE THEY WERE SHOKERS BUT ALSO BECAUSE

o
o

THEY LIVE IN LARGE CITIES. |'M HIGHLY CONTIDENT THESE ARE THE REASONS
BECAUSE THE EXPLANATIONS HAVE HIGH fIDELITY. HERE'S THE AVERAGE
FEATURE IMPORTANCE FOR THESE PEOPLE (HIGHER MEANS MORE IHPORTANT).

Average Feature Importance
o o
N >

— il b

0.0-

@ Wow, IT'S SURPRISING THAT WHETHER THE PERSON LIVES IS IN A CITY IS SO IMPORTANT.

YES, LIVES_IN_CITY HAS A SIGNIICANT EFFECT ON THE PREDICTIONS FOR THESE INDIVIDUALS. PERTURBING THIS FEATURE CAN

FLIP THE PREDICTION FOR 4 OF 15 OF THE INSTANCES IN THIS GROUP.

= UNC
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Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al
Fine-grained Control | Model Editing

Deleting Sensitive Info [ Machine Unlearning
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Evaluating Explainable Al

Evaluating Explainable AI: Which Algorithmic Explanations
Help Users Predict Model Behavior?

Peter Hase and Mohit Bansal

UNC Chapel Hill
peter@cs.unc.edu, mbansal@cs.unc.edu

ACL 2020
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Evaluating Explainable Al

e We propose a study design for measuring simulatability of an ML system
e An ML system is simulatable when a person can predict its outputs

Simulatable »> person has a good mental model of system
Explanation improves simulatability > explanation reveals causal chains behind behavior
> explanation is faithful

e We measure the effect of explanations on simulatability

= UNC
Wi~ p
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Evaluating Explainable Al

Test 1: Forward Simulation Test
e Predict model outputs before/after examples are explained to them

Post Sim. Pre Sim. _  Explanation

Accuracy Accuracy  Effect

= UNC
Wi~ p
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Evaluating Explainable Al

Test 1: Forward Simulation Test

e Predict model outputs before/after examples are explained to them

Post Sim. Pre Sim.

_ __ Explanation
Accuracy Accuracy Effect
Learning Phase
{z,y, Q}dev_’@
€ . Explanation
@ : Model prediction
Y : Human simulation

= UNC
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Evaluating Explainable Al

Test 1: Forward Simulation Test

e Predict model outputs before/after examples are explained to them

Post Sim. ~ Pre Sim. __  Explanation
Accuracy Accuracy Effect
Learning Phase Prediction Phase i

(Pre)

{mvyag}dev_’@ _>{x}test<lﬂl_»{y}

@ o {ypre}
€ : Explanation
@ . Model prediction
Y : Human simulation

= UNC
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Evaluating Explainable Al

Test 1: Forward Simulation Test

e Predict model outputs before/after examples are explained to them

Post Sim. Pre Sim.

_ __ Explanation
Accuracy Accuracy Effect
Learning Phase i Prediction Phase | ( Learning Phase
(Pre)

(w/ explanations)

A —’{’Q} —> f
{fE,yay}dev_’@ _){x}test< = i IL
8—»{%)7‘8}) | {x,y,?),e}deu—’@ |

. Explanation
. Model prediction

. Human simulation

S ®
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Evaluating Explainable Al

Hase et al.

Test 1: Forward Simulation Test

Accuracy

Vs

Pre Sim.
Accuracy

Predict model outputs before/after examples are explained to them

Post Sim.

Explanation

Effect

Learning Phase

Prediction Phase
(Pre)

r

Learning Phase
(w/ explanations)

Prediction Phase

(Post)
—> ¥ = 1—>
{mayag}dev_*@ _>{$}test<lﬂl {y} i & { }t t<lﬂl {y}
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Evaluating Explainable Al

Test 2: Counterfactual Simulation Test
e Predict model outputs before/after similar examples are explained to them

Post Sim. Pre Sim. _  Explanation

Accuracy Accuracy  Effect

= UNC
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Evaluating Explainable Al

Test 2: Counterfactual Simulation Test
e Predict model outputs before/after similar examples are explained to them

Post Sim. ~ Pre Sim. __  Explanation

Accuracy Accuracy Effect
( Predic(tli)on)Phase i € . Explanation

re A
. . : Model prediction
{xc}test _>{yc} q . p v ¥
(59 heot 20 > (i) Y : Human simulation
R @ e I : Counterfactual input
:l)c . Counterfactual model prediction

(& J
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Evaluating Explainable Al

Test 2: Counterfactual Simulation Test
e Predict model outputs before/after similar examples are explained to them

Accuracy Accuracy Effect

Post Sim. Pre Sim. _  Explanation

e N e N . .
Prediction Phase Prediction Phase € . Explanation
(Pre) (Post) A Model dicti
. . : . . Model prediction
{xc}test Y_’{yc} {mc}test _’{yc} q ) p . .
gl = (Gore} —> ( e} 4 (et} Y : Human simulation
» test —> — T6 W U @ st —> = .
@ L ym ‘ 8 pas L . Counterfactual input
d :l)c . Counterfactual model prediction
N J J
NS
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Evaluating Explainable Al

Experiment Setup
e Train neural networks on sentiment analysis and income prediction tasks
Four local explanation methods
2166 responses from 29 undergraduates (in-person tests)
Hypothesis testing done by block bootstrap

= UNC
Wi~ p
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Evaluating Explainable Al

Hase et al.

s ™
Input, Label, and Model Output
x = Despite modest aspirations its occasional charms are not to be dismissed.
y = Positive § = Negative
N /
4 M -
LIME /Prototype ) (Decision Boundary A
charms +.05 Most similar prototype: Step 0 | Evidence Margin: -5.21
modest +.04 Routine and rather silly.
dismissed -.06 Similarity score: 9.96 out of 10 Step 1 | occasional —» rare
OCCZSIOQ?I }; Important words: (none selected) Evidence Margin: -3.00
S f\;splde -.26 \_ /| Step 2 [ modest —» impressive
um of Words -. Evid Margin: +0.32
Baseline .24 ﬁ /Anchor R vidence Vargin
Est. Probability -.02 1 o ; : (9| Despite impressive aspirations its rare
L Y 0 1) \p(y Negative | {occasional} C z) > '95/ 9 charms are not to be dismissed. )
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Evaluating Explainable Al

Main Results

e LIME improves simulatability for tabular data
o T70.74% > 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
o (across forward and counterfactual tests)
e Prototype model improves counterfactual simulatability
o 63.13% > 72.66% accuracy, +9.53 (+/- 8.55) ppts, p=.032
o (across datasets)
e Other estimates do not significantly differ from 0 (p <.05)
o LIME for text
o Prototype for forward sim.
o Anchor explanations

o Counterfactual explanations

= UNC
Wi~ p
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Evaluating Explainable Al

Subjective Ratings

e Do users know when explanations are good?
o Ask users to rate explanations on 1-7 scale
o “Does this explanation show me why the system thought what it did?”
o Estimate simulation score from ratings

e No! (Ratings not statistically significant predictor of faithfulness)

= UNC
Wi~ p
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Evaluating Explainable Al

Conclusions
e LIME worked with low-dimensional tabular data
Local explanations fail to reveal how models work over huge data spaces
e ...and counterfactual scenarios
Users can’t tell when explanations are good or not

= UNC
Wi~ p
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Evaluating Explainable Al

Recent studies with LLMs...

[2023] Language Models Don’t Always Say What They Think: Unfaithful
Explanations in Chain-of-Thought Prompting

[2023] Do Models Explain Themselves? Counterfactual Simulatability of Natural
Language Explanations

[2023] Faithfulness Tests for Natural Language Explanations

[2023] ALMANACS: A Simulatability Benchmark for Language Model Explainability
[2024] Towards Consistent Natural-Language Explanations via
Explanation-Consistency Finetuning

[2024] Bias-Augmented Consistency Training Reduces Biased Reasoning in
Chain-of-Thought

= UNC
Wi~ p
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Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al

Fine-grained Control | Model Editing

Deleting Sensitive Info [ Machine Unlearning

= UNC
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Why Fine-grained Control?

What awards did Mary Lowe Good receive?

Mary Lowe Good was a renowned chemist who made significant contributions to the field of €3 P

organic chemistry. She received several awards throughout her career, including:

1. Garvan Medal (1954) - This is awarded by the American Chemical Society (ACS) to
recognize outstanding contributions to the field of chemistry by women.

2. Francis P. Garvan-John M. Olin Medal (1963) - This is also awarded by the ACS, to
recognize distinguished service to chemistry by women.

3. Priestley Medal (1983) - This is the highest honor awarded by the ACS, and it recognizes
distinguished services to chemistry.

1. National Medal of Science (1991) - This is the highest scientific honor awarded by the

United States government.

https://en.wikipedia.org/wiki/Mary_L._Good




Why Fine-grained Control?

Hase et al.

Fast forward one year...

You
What awards did Mary Lowe Good receive?

ChatGPT

Mary Lowe Good was a renowned chemist and influential figure in science policy, recognized for
her significant contributions to the fields of inorganic chemistry and science administration. Over
her career, she received numerous awards and honors, reflecting her achievements in research,

education, and public service. Some of the notable awards and honors she received include:

Wrong Garvan-0lin Medal (1980): Awarded by the American Chemical Society, this medal recognizes
distinguished service to chemistry by women chemists.

Right Priestley Medal (1997): The highest honor conferred by the American Chemical Society, awarded
for distinguished service to chemistry.

. Member of the National Academy of Engineering (Election Year: 1987): This is one of the highest

nght professional distinctions accorded to an engineer, recognizing outstanding contributions to
engineering research, practice, or education.

Wron g .. Fellow of the American Academy of Arts and Sciences (Election Year: Unknown): This fellowship
acknowledges leaders in the academic disciplines, the arts, business, and public affairs.

https://en.wikipedia.org/wiki/Mary_L._Good 2/13/24
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Why Fine-grained Control?

Usual argument goes like...
e Pretraining and finetuning large models over lots of data is expensive
e We can identify errors, but want to avoid re-training
e Want to fix errors one at a time

= UNC
Wi~ p
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Hase et al.

Why Fine-grained Control?

Usual argument goes like...
e Pretraining and finetuning large models over lots of data is expensive
e We can identify errors, but want to avoid re-training - would this even work?
e Want to fix errors one at a time

= UNC
Wi~ p
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Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al

Fine-grained Control | Model Editing

Deleting Sensitive Info [ Machine Unlearning

= UNC
Wi~ p
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Model Editing - Background

Semantically equivalent p— _Fact_ tg_ cba_pg_e_ corne Fact that also changes
P \ P L L L e
What is the capital How is Namibia's ' What is the capital ! . How is Namibia's :
of Namibia? capital city called? i of Namibia? 1, capital city called? :
! ! I R
Answers Scores Answers Scores Answers Scores Answers Scores
Namibia -0.43 Namibia -0.32 Windhoek -0.06 Windhoek -0.07
Nigeria  -0.69 Nigeria  -0.79 Tasman  -1.42 Tasman -1.50
Nibia -0.89 Nibia -0.87 Windygates -1.52 Windygates -1.51
Namibia -1.08 Tasman -1.14 Tasmania -1.59 Windhoof -1.53
Tasman -1.19 Namibia -1.16 Windhoof -1.66 Tasmania -1.53
Before Edit After Edit

(De Cao et al., 2020)

= | UN
“m C
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Model Editing

A word on terminology...

Editing = updating = revising

What are we editing?

“Fact” and “knowledge” seem awkward if information isn’t true
“Belief” feels appropriately weaker

Dennett (1995) characterizes a belief as:

An informational state decoupled from any motivational state
More to say on criteria for belief...(Dretske, 1981)

This problem has been called belief revision in CS+philosophy since 1979 (Doyle)

= UNC
Wi~ p
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https://dl.tufts.edu/concern/pdfs/rj430g708
https://mitpress.mit.edu/9780262540384/knowledge-and-the-flow-of-information/
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Hase et al.

Model Editing

Do Language Models Have Beliefs?
Methods for Detecting, Updating, and Visualizing Model Beliefs

Peter Hase'? Mona Diab' Asli Celikyilmaz' Xian Li'
Zornitsa Kozareva!  Veselin Stoyanov!  Mohit Bansal? Srinivasan Iyer!
Meta Al 2UNC Chapel Hill

{peter, mbansal}@cs.unc.edu

{mdiab, aslic, xianl, zori, ves, sviyer}@fb.com

EACL 2023

= UNC
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Hase et al.

Model Editing

Two main research questions:

1. How should we evaluate model edits?
2. Can we continually update a model with new beliefs?

= UNC
Wi~ p
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Model Editing

e How should we evaluate model edits?

/\M@\/ M (Main Input) : Aviper is a vertebrate.
NS
43 LLINLP



Hase et al.

Model Editing

e How should we evaluate model edits?

1 ///,Q\\\
i (
Vo | P )
<Mz_\/r/\:/ M (Main Input) : Aviper is a vertebrate.
- P (Paraphase Data) : Vipers are vertebrates.

’
S e e e e, ——.—————————— - - ——

= UNC
Wi~ p
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Model Editing

Hase et al.

’

How should we evaluate model edits?

0 B)

M
P
E

45

(Main Input)
(Paraphase Data)
(Entailed Data)

: Aviper is a vertebrate.
: Vipers are vertebrates.
: Aviper has a brain.

= UNC
Wi~ p



Model Editing

Hase et al.

’

How should we evaluate model edits?

~ _

SRS

46

(
(
(
(

Main Input)
Paraphase Data)
Entailed Data)

Random Data)

: Aviper is a vertebrate.
: Vipers are vertebrates.
: Aviper has a brain.

: Chile is a country.

= UNC
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Model Editing

Hase et al.

’

How should we evaluate model edits?

~ _

(Main Input)

(Paraphase Data)
(Entailed Data)
(
(

SRS

Random Data)
LN (Local Neutral Data) :

47

: Aviper is a vertebrate.
: Vipers are vertebrates.
: Aviper has a brain.

: Chile is a country.

A viper is venemous.

= UNC
Wi~ p



Hase et al.

Model Editing

e Continual belief updating - hypernetwork weight editing on t5-base
e Main conclusions:

1.

o &> Wb

Fixing one error works well, but fixing many errors is difficult

Harder to fix errors than to create them

Harder to generalize to entailed data than paraphrases

Harder to retain performance on local data than random data

Updates greatly improve consistency (model was wrong in inconsistent ways)

= UNC
Wi~ p
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Hase et al.

Model Editing

e Continual belief updating - hypernetwork weight editing on t5-base
e Since2021...

= UNC
Wi~ p
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Model Editing - Recent Work

Hase et al.

e Continual belief updating - MEMIT weight editing on GPT-J (Meng et al., 2022)

100 1

80 1

60 -

401

~= Update Success (Main Input)

20 1

Number of Edits

50

Pretty good at 10k edits

= UNC
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https://arxiv.org/pdf/2210.07229.pdf

Hase et al.

Model Editing - Recent Work

Continual belief updating - MEMIT weight editing on GPT-J (Meng et al., 2022)

No entailment evaluation

Entailment is hard to measure
e We adapted data from LeapOfThought (Talmor et al., 2020), but it’s a little synthetic

Recent work:
1. Evaluating the Ripple Effects of Knowledge Editing in Language Models
(Cohen et al., 2023)
2. MQUAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions

(Zhong et al., 2023) 2= UNC
51 Ilm. NLP


https://arxiv.org/pdf/2210.07229.pdf
http://128.84.4.27/pdf/2006.06609
https://arxiv.org/pdf/2307.12976.pdf
https://arxiv.org/pdf/2305.14795.pdf

Hase et al.

Model Editing

Conclusions

Model editing is increasingly useful for fine-grained control...
...but needs stronger evals focusing on fixing errors and measuring entailment

= UNC
Wi~ p
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Hase et al.

Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al
Fine-grained Control [ Model Editing

Deleting Sensitive Info | Machine Unlearning
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Hase et al.

Definitions * Motivation

e Refer to ethically sensitive information as sensitive information
e In pretraining, LLMs learn...

o Personal information

o Copyrighted information

o Knowledge that could be used to harm others

(e.g. instructions for crimes, CBRN weapons)

o Various toxic beliefs/content

o Factual information that has gone out of date (could become misinfo)
e We would like to remove this information from LLMs

(yes there are dual-use concerns)

54



Hase et al.

Definitions * Motivation

e Deleting information from LLMs is underdefined

e Finetuning (RLHF, SFT, safety training, etc.) appears to hide rather than remove
sensitive information (Zou et al., 2023)

e Thisis a model editing problem - update individual beliefs in a model

55
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Hase et al.

Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al

Fine-grained Control [ Model Editing

Deleting Sensitive Info | Machine Unlearning
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Patil + Hase et al.

Unlearning in LLMs

CAN SENSITIVE INFORMATION BE DELETED FROM
LILMS? OBJECTIVES FOR DEFENDING AGAINST
EXTRACTION ATTACKS

Vaidehi Patil* Peter Hase* Mohit Bansal
UNC Chapel Hill

{vaidehi, peter, mbansal}@cs.unc.edu

ICLR 2024
Spotlight
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Patil + Hase et al.

Unlearning in LLMs

1. Notice sensitive info

|
Language .
0 "8

58



Patil + Hase et al.

Unlearning in LLMs

1. Notice sensitive info

v
Q—{tanguecel . A@
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Unlearning in LLMs

Threat model - “is info truly deleted?”
e Adversary seeks answer A to question Q
e Given a model, adversary obtains candidate set C of size B (budget)
e Adversary succeedsifAisinC

Why B attempts?

1. Password attempts

2. Parallel pursuit

3. Verification by data owner (or auditor)

Previous frameworks focused on formal guarantees of similarity to retrained model
(Cao and Yang, 2015)
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Unlearning in LLMs

Deletion metric - How good is defense?

arg min AttackSuccess@ B(M™) + ADamage(M™, M)
M*

Need to balance:

1. AttackSuccess: whether answer is in candidate set
2. Damage: change in model accuracy for other questions
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Unlearning in LLMs

Applying model editing for deletion - This is the defense

Tasks/data:
e Ourtestbed is factual information (CounterFact and ZSRE)

e Filter to questions with single-token answers, known by GPT-J model we attack

Model editing;:
e Optimizers:
o AdamW, ROME, MEMIT
e Objectives:
o ErrorInjection > say something else
o Fact Erasure » minimize answer probability
o Empty Response - say “l don’t know”
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Attacking models for “deleted” info

The Logit Lens Attacks
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Results
38% attack success at B=10 for GPT-J facts deleted by ROME + Empty Response
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Unlearning in LLMs

Improving Defense Methods
e Blackbox defense reduces to paraphrase + adversarial robustness
e Whitebox defense: delete information wherever it appears in model
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Unlearning in LLMs

Improving Defense Methods

e Blackbox defense reduces to paraphrase + adversarial robustness
e Whitebox defense: delete information wherever it appears in model
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Unlearning in LLMs

Results
1. Up to 38% attack success for GPT-J facts deleted by ROME+Empty Response (B=10)

With whitebox defense

2. “Foreseen” whitebox attack: 37% » 1.7%

3. “Unforeseen” whitebox attack: 38% - 2.4%
4. Blackbox attack rate seems unchanged

See paper for blackbox defense
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Unlearning in LLMs

Conclusions

e Want to delete sensitive information under adversarial extraction attacks
e Whitebox defenses help, but safety standards for deletion will vary
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Roadmap

Goal | Research

Interpretability | Evaluating Explainable Al

Fine-grained Control | Model Editing

Deleting Sensitive Info | Machine Unlearning

= UNC
Wi~ p
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2020

Evaluating Explainable Al: Which
Algorithmic Explanations Help
Users Predict Model Behavior?

Leakage-Adjusted Simulatability:
Can Models Generate Non-Trivial
Explanations of Their Behavior in
Natural Language?

2021

When Can Models Learn From
Explanations? A Formal
Framework for Understanding the
Roles of Explanation Data

The Out-of-Distribution Problem
in Explainability and Search
Methods for Feature Importance
Explanations

Do Language Models Have
Beliefs? Methods for Detecting,
Updating, and Visualizing Model
Beliefs
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2022

VisFIS: Visual Feature Importance
Supervision with
Right-for-the-Right-Reason
Objectives

2023

Does Localization Inform Editing?
Surprising Differences in
Causality-Based Localization vs.
Knowledge Editing in Language
Models

Can Sensitive Information Be
Deleted From LLMs? Objectives for
Defending Against Extraction
Attacks
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Thank You!

PDFs + code: https://peterbhase.github.io/research/

Contact Info:
Peter Hase, UNC Chapel Hill
peter@cs.unc.edu
https://peterbhase.github.io
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Model Editing

e What else can we do with model editing?
e Let’slook at connections between model beliefs

e Beliefs are connected when changing one leads the other to change
o Update belief A > observe a change in belief B
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Model Editing
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