
Interpretable and Controllable Language Models

Peter Hase

A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

May 6, 2024

Committee: Mohit Bansal
Ana Marasović
Sameer Singh
Shashank Srivastava
Sridhar Duggirala

To those who have taught me and whom I have learned from, thank you.

ii

Acknowledgments

First, I must thank my advisor and colleagues for their guidance and support in my
Ph.D. This includes my advisor Mohit Bansal, co-authors Shiyue Zhang, Swarnadeep Saha,
Miles Turpin, Zhuofan Ying, Thomas Hofweber, Harry Xie, Vaidehi Patil, Xiang Zhou,
Stephen Casper, Prateek Yadav, Han Guo, and Archiki Prasad (among others), and internship
supervisors Asma Ghandeharioun, Been Kim, Sarah Wiegreffe, Peter Clark, and Srinivasan
Iyer. I especially thank Mohit Bansal for his mentorship. I am always inspired by the
apprenticeship model that academic science is built on. Under Mohit’s guidance, I learned
how to make small contributions to our collective understanding, and I absorbed countless
little insights about how this process works. For my co-authors, I want to say thank you
for working with me. It is an enduring pleasure to carry a project from a fuzzy but exciting
idea to a concrete problem to be studied. Flying across the world to present research at a
conference is reward in excess to that of working alongside the few people in the world who are
as interested in a problem as you are. For my internship supervisors, I want to say thank you
for these short and fruitful visits to your research groups. I feel lucky to every year work with
someone new, someone I’ve wanted to work with for a while, and someone who I look up to.

Going back a little bit, I would also like to thank Cynthia Rudin for her mentorship during
my undergrad at Duke University. It was through research in her lab that I gained confidence
that I wanted to pursue further studies in computer science. Many other professors and
students there are responsible for me uncovering so much joy in the study of machine learning,
artificial intelligence, and human language. Five years later, this document is testament that
I found such joy in this path. Scientific research can be unpredictable, taxing, frustrating,
and extremely time-consuming. I am so glad to have found something that I truly love doing.

Outside of the lab, I owe a great deal to many friends, roommates, partners, therapists,
life coaches, colleagues, and family members. Whether my research has been going well or
poorly, it has always helped to talk about it with others, and I have talked about it a lot with
others. I particularly want to thank Michael, Tyler, Tom, Thomas, Alex, Joe, Sarah, Serge,
Archana, David, Deblina, Grace, Miles, Juan, Kevin, Mark, Kaleigh, Justin, George, and my
parents, Steve and Ashley Hase.

Lastly, I am thankful that I was paid to do this. My research has been supported by
fellowships from the UNC Graduate School and Google, as well as grants from the NSF and
DARPA.

iii

Table of Contents

1 Thesis Statement 1

2 Abstract 2

3 Introduction 3
3.1 Overview of Chapters . 4

4 Human Evaluation of ML Explanations 7
4.1 Introduction . 7
4.2 Background and Related Work . 8

4.2.1 What Does “Interpretable” Mean? . 8
4.2.2 Explanation Methods . 8
4.2.3 Evaluating Interpretability . 9

4.3 Explanation Methods . 10
4.3.1 LIME . 10
4.3.2 Anchor . 11
4.3.3 Prototype Model . 11
4.3.4 Decision Boundary . 11
4.3.5 Composite Approach . 12

4.4 Experimental Design . 12
4.4.1 Data and Task Models . 12
4.4.2 User Pool . 13
4.4.3 Simulation Tests . 13
4.4.4 Subjective Simulatability Ratings . 14

4.5 Results . 15
4.5.1 Do explanations help users? . 15
4.5.2 How do users rate explanations? . 15
4.5.3 Can users predict explanation effectiveness? 16

4.6 Qualitative Analysis . 16
4.6.1 Explanation Success Example . 16
4.6.2 Explanation Failure Example . 17

4.7 Discussion . 17
4.8 Conclusion . 18

5 Natural Language Explanation Methods 19
5.1 Introduction . 19
5.2 Related Work . 21
5.3 Modeling With Explanations . 22
5.4 LAS: Leakage-Adjusted Simulatability . 24

iv

5.5 Multi-Agent Explanation Optimization . 26
5.6 Experimental Results . 27

5.6.1 Automatic Explanation Evaluation . 27
5.6.2 Human Validation of LAS . 28
5.6.3 Accuracy-Interpretability Trade-off . 29
5.6.4 Multi-Agent Game . 30

5.7 Conclusion . 30

6 Adding Explanation Data to Discriminative Learning 31
6.1 Introduction . 31
6.2 Formalizing the Roles of Explanations . 31

6.2.1 Formal Framework and Relevant Work 32
6.2.2 Promising Models . 34

6.3 Synthetic Task . 34
6.4 Initial Experiments . 36

6.4.1 Explanation Retrieval Enables a Model to Solve Our Task 36
6.4.2 Why Is The Task Hard Without Explanations? 37

6.5 Discussion & Conclusion . 37

7 Feature Attribution Methods and Evaluation 39
7.1 Introduction . 39
7.2 Related Work . 40
7.3 Problem Statement . 41
7.4 The Out-of-Distribution Problem in Explanations 42
7.5 Analysis of Counterfactual Input OOD-ness 44
7.6 Explanation Methods and Experiments . 46

7.6.1 Explanation Methods . 46
7.6.2 Experimental Setup . 48
7.6.3 Main Results . 48

7.7 Conclusion . 50

8 Model Editing and Belief Graphs for LMs 51
8.1 Introduction . 51
8.2 Related Work . 53
8.3 Updating Beliefs in Language Models . 54
8.4 Experiment Setup . 57

8.4.1 Datasets . 57
8.4.2 Methods Evaluated . 57

8.5 Experiment Results . 58
8.5.1 Do LMs have beliefs about the world? 58
8.5.2 Can we update beliefs in LMs? . 59
8.5.3 How does the learned optimizer objective influence performance? . . . 61

8.6 Analysis . 61
8.6.1 Belief updates improve consistency . 61
8.6.2 Which beliefs are hard to retain when updating other beliefs? 62
8.6.3 Belief Graphs . 62

8.7 Discussion and Conclusion . 63

v

9 Localization and Editing of Knowledge in LMs 65
9.1 Introduction . 65
9.2 Related Work . 66
9.3 Notation and Background . 67

9.3.1 Data Notation . 67
9.3.2 Causal Tracing . 68
9.3.3 Model Editing with ROME . 69
9.3.4 Editing Metrics . 69

9.4 Does Edit Success Follow From Localization? 70
9.4.1 Experiment Design . 70
9.4.2 Model and Data . 70
9.4.3 Experiment Results . 71

9.5 Reconciling Localization and Editing . 72
9.5.1 Editing Problem Variants . 73
9.5.2 Experiment Design and Additional Edit Methods 73
9.5.3 Experiment Results . 73

9.6 Discussion . 75
9.7 Conclusion . 76

10 Conclusion 77

11 Published Work 78

A Additional Results and Details for Chapter 4 102
A.1 Method Implementations . 102
A.2 Perturbation Distributions . 104
A.3 Testing Environment . 104

B Additional Results and Details for Chapter 5 105
B.1 Experimental Details . 105

B.1.1 Datasets and Examples . 105
B.1.2 Hypothesis Testing . 105
B.1.3 Model Selection and Training Details 105
B.1.4 Training Simulator Models . 106
B.1.5 Hyperparameter Tuning . 106

B.2 LAS Robustness Checks . 107
B.2.1 Continuous Leakage Scores and LAS Metric 107
B.2.2 Robustness to Seed and Model Choice 108

B.3 Alternative Computational Models and Language Modeling Objectives 108
B.4 Human Quality Rating Collection . 108

C Additional Results and Details for Chapter 6 115
C.1 Additional Experiments . 115
C.2 Our Model for Initial Experiments . 115

C.2.1 Conditioning Mechanisms . 116
C.2.2 Retrieval . 117

C.3 Training Details . 118
C.3.1 Runtimes. 118

vi

C.3.2 Training Hyperparameters and Analysis 118
C.3.3 Experiment Confidence Intervals . 118

C.4 Synthetic Task Generative Process . 119

D Additional Results and Details for Chapter 7 120
D.1 Method Implementation and Hyperparameter Tuning Details 120

D.1.1 Replace Functions . 120
D.1.2 Explanation Methods . 120
D.1.3 Model Training Details and Experiment Runtimes 123

D.2 Experimental Details . 124
D.2.1 Data Preprocessing . 124
D.2.2 Analysis of Counterfactual Input OOD-ness Details 124
D.2.3 Compute Budget Details . 126

D.3 Additional Results . 126
D.4 Discussion . 129

E Additional Results and Details for Chapter 8 133
E.1 Learned Optimizer Details . 133
E.2 Additional Training Details . 133

E.2.1 Compute Costs. 133
E.2.2 Hyperparameters and Objective Terms. 135
E.2.3 Wikidata5m Additional Details. 136
E.2.4 LeapOfThought Additional Details . 137

E.3 Noise in Datasets . 138
E.4 Metric Computation and Bootstrap Details 139
E.5 Additional Results . 140

F Additional Results and Details for Chapter 9 145
F.1 Experiment Details . 145
F.2 Additional Results . 146
F.3 Robustness Experiments . 149

vii

1 Thesis Statement

Over the years, language models have demonstrated steadily increasing performance on a
wide variety of tasks. Their internal reasoning processes remain difficult to interpret, however,
and individual behaviors are hard to manipulate once a model has been trained. In this thesis,
I present research on interpretable and controllable language models. The main goals of this
work are to develop and evaluate tools for (1) explaining why language models produce the
outputs they do, and (2) exercising fine-grained control of language model behaviors.

1

2 Abstract

In this thesis, I present research on interpretable and controllable language models. The
immediate goals of this work are to develop and evaluate tools for (1) explaining why language
models produce the outputs they do, and (2) exercising fine-grained control of language model
behaviors. The broader goal of this research is to make AI systems safer for use in society.
The main contributions of this thesis are summarized below.

First, I discuss Human Evaluation of ML Explanations and work on evaluation protocols
for one-size-fits-all tests for model explanation faithfulness. We find that many popular
explanation methods do not help humans build a better mental model of how an AI system
works.

Second, I cover Natural Language Explanation Methods, extending our previous work
in evaluating ML explanations to include natural language explanations generated by LMs.
Here, we develop faithfulness tests that rely on model-based evaluation of natural language
explanations. We observe that explanations generated by language models often do explain a
small amount about the reasoning used to arrive at the task output.

Third, I survey approaches for Adding Explanation Data to Traditional Discriminative
Learning, which is a mirror problem to evaluating model explanations (i.e., humans should
learn from LM explanations and LMs should learn from human explanations). I argue that
explanation data is best utilized as model inputs rather than as model targets or a prior over
model weights in the context of discriminative learning.

Fourth, I introduce new approaches for Feature Attribution Methods and Evaluation, a
popular class of explanation methods from our prior studies. I suggest that, rather than
assessing feature importance for a model via ablated inputs (i.e. partly missing features), it is
preferable to explain only models that sometimes see ablated inputs during training. I also
introduce a compute-adjustable search method to search specifically for features that would
be sufficient or necessary for a model’s test-time prediction.

Fifth, I explore Model Editing and Belief Graphs for LMs. Linguistic features are a useful
unit of analysis for understanding LM behaviors, and this perspective motivates the above
work in explainability, but we may also take an intentional stance toward LMs and explain
their behavior in terms of beliefs and desires. In this section, I present methods for measuring,
manipulating, and visualizing factual “beliefs” in language models. We show that this is a
difficult problem, and past work does not always evaluate all of the relevant cases involved in
editing model beliefs.

Lastly, I describe work on Localization and Editing of Knowledge in LMs. This topic
combines interpretability and model editing. There has been great interest in localizing model
knowledge to specific model components, then editing those components to change model
knowledge. Our conclusions highlight important subtleties regarding (1) localization findings’
utility for model editing, and (2) the use of model editing to substantiate the validity of a
localization claim.

In summary, the main goals of this work are to develop and evaluate tools for (1) explaining
why language models produce the outputs they do, and (2) exercising fine-grained control of
language model behaviors.

2

3 Introduction

The field of machine learning has reached the point where learning systems now accomplish
complicated tasks that we cannot ourselves describe algorithmic solutions to. This progress
has been achieved primarily by training neural networks on extensive data in a self-supervised
fashion, followed by relatively small adjustments to models using only input-output supervision
for specific tasks of interest [21]. The unfortunate reality of the situation, however, is that
neural networks execute algorithms unbeknownst to us, described perfectly by long series
of matrix multiplications and nonlinearities but lacking any adequate description in plain
language. This means that it is hard to verify that a system will produce correct outputs in
general and that it does so with an acceptable reasoning process [46, 86]. It also means that
it is hard to fix undesirable behaviors in an ML system after it has been trained [38, 242].

In this thesis, I present research on interpretable and controllable language models. The
immediate goals of this work are to develop and evaluate tools for (1) explain why language
models produce the outputs they do, and (2) exercising fine-grained control of language model
behaviors. The broader goal of this research is to make AI systems safer for use in society.

The view of neural network interpretability in this thesis is heavily informed by prior
theoretical work on the purpose of explanation [46, 131], faithfulness of explanations to causal
mechanisms in models [84], human interpretation of explanations [85], the nature of trust
in AI [86], and expository work on the intentional stance by Dennett [40]. The goal of AI
interpretability is to develop accurate causal models of AI that invoke concepts that we as
humans are familiar with, and we want these causal models to inform us about the (long)
chains of events that lead to LM outputs [56]. The aim here is primarily to verify AI systems.
We want to check that AI makes decisions in a way that we find reasonable, safe, ethical,
value-aligned, etc. (above and beyond what we can confirm with observational test sets) [86].
Notably, this requires us explaining neural networks at the right level of abstraction. Giving
someone the weights to a neural network is in a limited sense a complete explanation of how
the model works, but it does not communicate anything to a person that would be useful for
them predicting when in the future they can trust the system to succeed or fail. In order to
judge whether AI makes decisions in reasonable, safe, or value-aligned manner, we need to
explain AI decisions at a level that is intelligible to people.

If an AI is not making decisions in a way we like, the next step is to improve the model so
that it does. This is broadly known as the problem of model control (not to be confused with
the control problem in dynamical systems). Better model control may follow from improved
understanding of how models work. Increasingly, researchers in interpretability have sought
out causal interventions that demonstrate the accuracy of their interpretations and enable a
researcher to adjust model behavior in a desirable direction, such as updating mistaken factual
knowledge in models [36] and improving the truthfulness of model generations [116]. However,
given our ability to supervise models end-to-end, it is not always necessary to develop a precise
theory of internal model mechanisms before exploring how to better control their behavior
[38, 72]. Sometimes optimizing for a new behavior with demonstrations is all that’s needed; it
is superfluous to know why the model made its previous mistake or how the model now reaches
the correct solution. Largely for this reason, the problem of model control is its own research
area that is historically distinct from machine learning interpretability. Yet, the connection
between the two areas will likely grow over time as we gain a better low-level understanding

3

of internal model mechanisms, which hopefully will enable better model control than trying
to teach a model a preferred behavior via input-output demonstrations (or RL) alone.

Below, I describe what each chapter covers. The overall flow of topics goes from inter-
pretability, to model editing (controllability), to a problem at the intersection of interpretability
and model editing.

3.1 Overview of Chapters

The thesis proceeds in chapters on different research contributions to the areas of interpretabil-
ity and model control, specifically in the context of language models. I see language models
as a good object of study since we lack complete explanations for their behavior, and human
language provides a rich means of interaction with models. The research presented includes
new evaluation procedures, modeling methods, interpretability tools, theoretical arguments,
visualization techniques, and conceptual work. I briefly summarize the chapters below.

1. Human Evaluation of ML Explanations [64]. A variety of methods exist for “explaining”
blackbox machine learning models, including feature attribution methods that assign
importance scores to parts of the model input, counterfactual explanations that highlight
what changes to an input lead the model prediction to change, prototype explanations
that refer to previous examples of model behavior to explain current model behavior,
influence functions for identifying training data that caused a test-time prediction, and
natural language explanations that attempt to explain the reasoning for a decision in plain
English (or another language), inter alia. These diverse methods are often evaluated in
different ways, however, making it difficult to compare which is best. Specifically, it is hard
to tell which method is the best in terms of equipping humans with the most accurate
understanding of the ML model being explained, a property known as faithfulness [84].

I developed human subject test protocols for assessing the faithfulness of different kinds of
model explanations all within the same framework, and using these protocols I showed that
a number of popular explanation methods failed to improve understanding of even small
neural networks on relatively simple tasks [64]. While these protocols had been proposed
before in the community [46], they had not been implemented with proper controls designed
to isolate the effect of ML explanations on human understanding of the models. Our
negative results echoed a broader trend within the Explainable AI (XAI) literature that
many methods made popular by their theoretical backing or impressive visualizations are
nonetheless insufficient for explaining model behavior to users (in our case, undergraduates
with at least one math or CS class).

2. Natural Language Explanation Methods [68]. The rise of large language models
and datasets of textual datapoint explanations enables language models (LMs) to produce
textual explanations of their outputs for a given input.

I conducted the first evaluation of such natural language explanations for their faithfulness
to the LMs generating them [69]. To circumvent the need for expensive human faithfulness
studies [64], I developed a causal inference method that allowed for a model-based evaluation
of explanation faithfulness while controlling for explanations’ propensity to “leak” their
answer (i.e., restate or heavily imply the model’s answer to the question while giving
the underlying reasoning for the answer). Using this method, experiments showed the
surprising conclusion that language models in the 500M parameter range often could
output natural language explanations that indicated the reasoning supporting their answer.

4

Additionally, I showed that by optimizing for this model-based metric in a multi-agent
communication game, agents could sometimes improve the faithfulness of their explanations,
giving the reasoning behind their answers without trivially restating their answer within
the explanation.

3. Adding Explanation Data to Traditional Discriminative Learning [66]. My
previous study of LMs generating explanations prompted me to consider whether LMs
could learn from human natural language explanations. While similar to the common
“instruction-following” task of reinforcement learning and robotics, this task had received
relatively little attention within NLP.

I developed a synthetic task for studying the role of explanation data in supervised machine
learning, surveyed and formalized existing graphical models for incorporating this data into
a discriminative model, and proposed a retrieval-based model for incorporating explanation
data into the modeling process in a scalable way [66]. On synthetic tasks, a 500M-parameter-
retrieval based model achieved 95%+ task performance, while its counterpart without
access to explanations for training data achieved less than 60% on the task. While results
with “real” datasets were inconclusive, I argued that explanation data is best utilized as
model inputs rather than as model targets or a prior over model weights, a position later
substantiated by a follow-up study with 280B parameter models using in-context learning
[106].

4. Feature Attribution Methods and Evaluation [71]. Feature attribution, the process
of assigning importance scores to parts of an input representing their contribution to a
model output, is often evaluated with automated metrics that insert or delete parts of an
input according to their importance scores in order to assess which of two different methods
rank-ordered the features in a more appropriate way. This commonly accepted evaluation
approach based on input ablations exhibited two peculiarities: (1) very few works attempted
to optimize for metric performance directly when developing new explanation methods, (2)
many works reporting these metrics used them despite the well-known problem that they
required passing OOD inputs to a model during evaluation [42].

I developed a new feature attribution method based on local search that directly optimized
for these metrics and significantly improved over popular existing methods like LIME, and I
presented a novel theoretical argument for why our interpretation of approaches using input
ablations would be skewed by these inputs being OOD to the model, which opened the
door to a simple empirical fix to this issue [71]. The result suggested a change of practice:
rather than using a linear attribution method on an arbitrary blackbox model, one should
preferably explain only models that sometimes see ablated inputs during training (i.e.
partly missing features), while obtaining explanations with a compute-adjustable search
method to search specifically for features that would be sufficient or necessary for a model’s
test-time prediction.

5. Model Editing and Belief Graphs for LMs [70]. As large language models were shown
to store significant relational knowledge about real-world entities, an interest developed in
editing this relational knowledge to correct individual factual mistakes in a model’s world
knowledge.

I proposed a model-editing method that, relative to past work [38], was able to edit multiple
relational facts one after the other, while using editing objectives that respected semantic
equivalence between facts (like paraphrase), logical consequences of updated facts (i.e.
entailed facts), and existing and unrelated knowledge about entities for which some specific

5

knowledge was changing [70]. Additionally, I used this method to construct exploratory
“belief graphs” for models in the 500M range, representing causal dependencies between
model beliefs: if a model thought one sentence was true, and editing the model to think
that sentence was false led the prediction to flip from true to false for a different sentence,
this would be visualized in our belief graph as an edge between the two statements. Since
then, model editing has become an increasingly popular problem area, and I believe belief
graphs will be a useful tool for understanding counterfactual dependencies in LMs’ models
of the world going forward.

6. Localization and Editing of Knowledge in LMs [72]. As model editing has surged
in its popularity, new methods making progress on the problem have grounded their
approaches in low-level interpretability results for LMs. For example, the popular ROME
method of Meng et al. [128] based its approach on results from a causal localization
technique called Causal Tracing that assigns scores to specific weights in an LM indicating
how much they contribute to the model’s knowledge of a particular fact. Meng et al. [128]
used Causal Tracing to conclude that facts are typically “stored” in mid-layer MLP weights,
and therefore these are the best weights in a model for editing.

I showed that, surprisingly, there is no the relationship between localization and knowledge
editing models as measured by representation intervention methods like Causal Tracing
and layer-level MLP-editing methods like ROME. In fact, Causal Tracing tells you nothing
about which layer should be edited in order to adjust a model’s factual knowledge. This
finding highlights that where a fact is currently stored in a model is different from where
an edited version of that fact could be stored, and it points to a need for increased caution
and rigor regarding claims of (1) localization findings’ utility for model editing, and (2)
the use of model editing to substantiate the validity of a localization claim.

6

4 Human Evaluation of ML Explanations

This first contribution focuses on evaluation of explanations of individual ML outputs that
aim to explain why a model produces output y for input x. We aim to assess the faithfulness
of explanations, and we do so with a proxy for faithfulness called simulatability.

4.1 Introduction

Interpretable machine learning is now a widely discussed topic [172, 46, 120, 61]. While
survey papers have not converged on definitions of “explainable” or “interpretable,” there are
some common threads in the discourse. Commentators observe that interpretability is useful
for achieving other model desiderata, which may include building user trust, identifying the
influence of certain variables, understanding how a model will behave on given inputs, and
ensuring that models are fair and unbiased.

In their review, Doshi-Velez and Kim [46] outline an approach to measuring interpretabil-
ity. They describe two human-subject tasks that test for a particularly useful property:
simulatability. A model is simulatable when a person can predict its behavior on new inputs.
This property is especially useful since it indicates that a person understands why a model
produces the outputs it does. Thus, simulatability is a proxy for faithfulness [84], as faithful
explanations should improve simulatability (but are not guaranteed to, if users cannot leverage
information from the explanations for predicting model outputs on future inputs). The first
of the two tasks is termed forward simulation: given an input and an “explanation,” users
must predict what a model would output for the given input. The second is counterfactual
simulation: users are given an input, a model’s output for that input, and an “explanation” of
that output, and then they must predict what the model will output when given a perturbation
of the original input. The explanation itself is algorithmically generated by a method for
interpreting or explaining a model. Simulation tests have been carried out before, but no
study to date has isolated the effect of explanations on simulatability [167, 25, 141, 9].

We carry out simulation tests that are the first to incorporate all of the following design
choices: (1) separating explained instances from test instances, so explanations do not give
away the answers, (2) evaluating the effect of explanations against a baseline of unexplained
examples, (3) balancing data by model correctness, so users cannot succeed by guessing the
true label, and (4) forcing user predictions on all inputs, so performance is not biased toward
overly specific explanations. We display our study design in Figure 4.1.

We provide results from high-quality human user tests (with over 2100 responses) that
include both forward and counterfactual simulation tasks. Through these tests, we measure
explanation effectiveness for five methods across text and tabular classification tasks. Our
evaluation includes two existing explanation techniques, LIME and Anchor [165, 167], and we
translate two other explanation methods from image recognition models to work with our
textual and tabular setups. The first of these is a latent space traversal method, which we
term the Decision Boundary approach [94, 177], and the second is a case-based reasoning
method, which we term the Prototype method [27]. The final method is a novel Composite
approach that combines complementary explanations from each method. Lastly, we also
collect subjective, numerical user ratings of explanation quality. Our key findings are:

7

(Post)
Prediction PhaseLearning Phase

(w/ explanations)
Learning Phase

(Pre)
Prediction Phase

Simulation
Forward

Simulation
Counterfactual

(Pre)
Prediction Phase

: Human simulation

: Model prediction

: Explanation

: Counterfactual input

: Counterfactual model prediction

(Post)
Prediction Phase

Explanation
Effect

Post Sim.
Accuracy

Pre Sim.
Accuracy

Figure 4.1: Forward and counterfactual simulation test procedures. We measure human users’
ability to predict model behavior. We isolate the effect of explanations by first measuring
baseline accuracy, then measuring accuracy after users are given access to explanations of
model behavior. In the forward test, the explained examples are distinct from the test
instances. In the counterfactual test, each test instance is a counterfactual version of a model
input, and the explanations pertain to the original inputs.

1. LIME improves forward and counterfactual simulatability in our tabular classification task.

2. Prototype improves counterfactual simulatability across textual and tabular data domains.

3. No method definitively improves forward and counterfactual simulatability together on the
text task, though our Prototype and Composite methods perform the best on average.

4. It appears that users’ quality ratings of explanations are not predictive of how helpful the
explanations are with counterfactual simulation.

5. While users rate Composite explanations as among the best in quality, these combined
explanations do not overtly improve simulatability in either data domain.

4.2 Background and Related Work

4.2.1 What Does “Interpretable” Mean?

Survey papers use key terms in varying ways. Rudin [172] draws a distinction between
interpretability and explainability, suggesting that a model is interpretable if it performs
computations that are directly understandable. Post-hoc explanations, on the other hand,
are potentially misleading approximations of the true computations. Gilpin et al. [61] also
distinguish between the two concepts, though they define them differently.

In this chapter, we do not distinguish between interpretability and explainability. Rather,
we adopt the conceptual framework of Doshi-Velez and Kim [46], who consider interpretability
in terms of downstream desiderata one can assess models with respect to. Our terminology is
as follows: we will say that explanation methods may improve the interpretability of a model,
in the sense that an interpretable model is simulatable.

4.2.2 Explanation Methods

Several taxonomies have been proposed for categorizing methods for interpretability. We
organize methods below into the categories of: feature importance estimation, case-based

8

reasoning, and latent space traversal.

Feature Importance Estimation. Feature importance estimates provide information about
how the model uses certain features. Most prominent among these methods are the gradient-
based approaches first introduced for vision by Simonyan et al. [186], which Li et al. [114] show
may be translated for use with text data. These approaches have since been demonstrated to
sometimes behave in counterintuitive ways [1, 99]. A number of alternative methods have
been proposed for quantifying feature importance across data domains [99, 126, 199]. In our
study, we choose to evaluate two domain-agnostic approaches, LIME and Anchor [165, 167].
These methods use simple models, i.e. sparse linear models and rule lists, to approximate
complex model behavior locally around inputs. They show the estimated effects of directly
interpretable features on the model’s output. For these methods, what is “local” to an input
is defined in a domain-specific manner via a perturbation distribution centered on that input.

Case-based Reasoning. Prototype models classify new instances based on their similarity
to other known cases. Two works on prototype models for computer vision introduced neural
models that learn prototypes corresponding to parts of images [27, 67]. These prototypes are
used to produce classifier features that are intended to be directly interpretable.

Latent Space Traversal. These methods traverse the latent space of a model in order to
show how the model behaves as its input changes. In a classification setting, crossing the
decision boundary may reveal necessary conditions for a model’s prediction for the original
input. Several methods exist for vision models [94, 177]. To our knowledge no such approach
exists for discriminative models of text and tabular data, so we develop a simple method for
these kinds of models (described in Section 4.3.4).

4.2.3 Evaluating Interpretability

Here we discuss works involving automatic and human evaluations of interpretability, as well
as how we improve on past simulation test design. While human evaluations are useful for
evaluating many aspects of interpretability, we restrict our discussion to works measuring
simulatability.

Improving Forward Test Design. Forward simulation tasks have been implemented in
many different forms, and there is a serious need for consensus on proper procedure here.
Doshi-Velez and Kim [46] originally propose that users predict model behavior, given an
input and an explanation. With many explanation methods, this is a trivial task because the
explanations directly reveal the output. For example, LIME gives a predicted probability that
indicates the model behavior with high likelihood. We make a number of experimental design
choices that give us more reliable estimates of method effectiveness than past studies. (1) We
separate the explained instances from the test instances, to prevent explanations from giving
away the answers. In three studies, the same data points were used as both explanation and
prediction items [141, 25, 9]. (2) We evaluate the effect of explanations against a baseline
where users see the same example data points without explanations. No prior evaluation
includes this control. (3) Two choices further distinguish our test from that of Ribeiro et al.
[167]. We balance data by model correctness, so users cannot succeed simply by guessing the
true label, and we force user predictions on every input, so our metrics do not favor overly
niche explanations.

Counterfactual Simulatability. Counterfactual simulatability has, to our knowledge,
never been measured for machine learning models. While Doshi-Velez and Kim [46] propose
asking users to edit inputs in order to change the model outputs, we instead ask users to

9

predict model behavior on edited versions of data points, as this approach is more scalable
than soliciting creative responses.

Relation to Automatic Tests. Prior works have proposed automatic metrics for feature
importance estimates [141, 80, 42]. Typically these operate by checking that model behavior
follows reasonable patterns on counterfactual inputs constructed using the explanation, e.g.,
by masking “important” features and checking that a class score drops. Whereas automatic
metrics define appropriate model behavior in advance for counterfactual instances generated
by a fixed schema, we present a random counterfactual to a human and elicit their prediction
of model behavior for that instance. This allows for human validation of model behavior in a
broader range of input scenarios than an automatic procedure, where human expectations are
given in response to diverse and concrete examples rather than dictated in advance.

LIME

0 1

+.05
+.04
-.06
-.11
-.18

.24

-.02

-.26

charms
modest

dismissed
occasional

despite

Sum of Words
Baseline

Est. Probability

NegativePositive
Despite modest aspirations its occasional charms are not to be dismissed.

Input, Label, and Model Output

Step 2 modest impressive
Evidence Margin: +0.32

Decision Boundary

Evidence Margin: -5.21Step 0

Step 1 occasional rare
Evidence Margin: -3.00

Despite impressive aspirations its rare
charms are not to be dismissed.

Anchor

Prototype
Most similar prototype:

Important words: (none selected)

Similarity score: 9.96 out of 10
Routine and rather silly.

Figure 4.2: Explanation methods applied to an input from the test set of movie reviews.

Subjective Ratings. Hutton et al. [82] measure user judgments of whether word importance
measures explain model behavior in a text classification setting. Our rating task is thus similar
to theirs; our changes are that we evaluate with a Likert scale rather than forced ranking,
using explanation techniques for neural models rather than word importance estimates from
a naive Bayes classifier. In another study, users judged image classification explanations on
a Likert scale ranging from “no explanation” to “concise explanation” [9]. Whereas this
scale focuses on conciseness, we ask users to rate how explanations reveal reasons for model
behavior.

4.3 Explanation Methods

In this section, we describe the explanation methods. Example explanations for a test movie
review are shown in Figure 4.2. We limit our discussion of LIME and Anchor, since details
for these methods can be found in the original papers. Note that LIME, Anchor, and our
Decision Boundary method can be used with arbitrary blackbox models. The Prototype
method is itself a neural model that also produces an explanation.

4.3.1 LIME

Ribeiro et al. [165] present LIME as a local linear approximation of model behavior. With a
user-specified feature space, a linear model is fit to the blackbox outputs on samples from a
distribution around an input. We set the number of features to use to 5, and we take class
probabilities as our model output. When showing LIME explanations to users, we give them

10

the selected features with estimated weights, the model intercept, the sum of model weights,
and the predicted model output.

4.3.2 Anchor

Ribeiro et al. [167] introduce a method for learning rule lists that predict model behavior
with high confidence. With samples from a distribution around an input, they use a PAC
learning approach to obtain a rule list. When the rules apply to an input, there is a high
probability it will receive the same prediction as the original. The feature space of the rule
list is specified by the user. As in the original work, we use individual tokens for our text
data, and we use the same learning parameters for each Anchor explanation.

4.3.3 Prototype Model

Prototype models have previously been used for interpretable computer vision [27, 67]. We
develop a prototype model for use with text and tabular classification tasks. In our model, a
neural network g maps inputs to a latent space, and the score of class c is:

f(xi)c = max
pk∈Pc

a(g(xi),pk)

where a is a similarity function for vectors in the latent space, and Pc is the set of protoype
vectors for class c. We choose the Gaussian kernel for our similarity function: a(zi,pk) =
e−||zi−pk||2 . The model predicts inputs to belong to the same class as the prototype they’re
closest to in the latent space. Unlike in Chen et al. [27], we take the max activation to obtain
concise explanations.

In lieu of image heatmaps, we provide feature importance scores. What distinguishes these
scores from those of standard feature importance estimates is that the scores are prototype-
specific, rather than class-specific. We choose a feature omission approach for estimation.
With text data, omission is straightforward: for a given token, we take the difference in
function output between the original input and the input with that token’s embedding zeroed
out. In the tabular domain, however, variables can never take on meaningless values. To
circumvent this problem, we take the difference between the function value at the original
input and the expected function value with a particular feature missing. The expectation is
computed with a distribution over possible values for a missing feature, which is provided by
a multinomial logistic regression conditioned on the remaining covariates.

When presenting prototype explanations, we provide users with the predicted class score,
most similar prototype, and top six feature importance scores, provided that score magnitudes
meet a small threshold. In the explanation in Figure 4.2, no scores meet this threshold. We
set the size of Pc to 40 for our text classification task and 20 for our tabular classification
task. For further training and feature importance details, see the Appendix.

4.3.4 Decision Boundary

Joshi et al. [94] and Samangouei et al. [177] introduce techniques for traversing the latent
spaces of generative image models. Their methods provide paths that start at input data
points and cross a classifier’s decision boundary. Such methods may help users see the
necessary conditions for the model prediction.

We provide a simple method for traversing the latent space of a discriminative classifier
(see example in Figure 4.2). Our algorithm first samples around the original input to get

11

instances that cross the decision boundary. A counterfactual input is chosen from these
by taking the instance with the fewest edited features (tokens or variables), while breaking
ties using the Euclidean distance between latent representations. Lastly, we provide a path
between inputs by greedily picking the edit from the remaining edits that least changes the
model’s evidence margin, which is the difference between positive and negative class scores.
The explanations we present to users include the input, steps to the counterfactual input, and
evidence margin at each step. When the path is longer than four steps, we show only the last
four.

4.3.5 Composite Approach

We hypothesize that the above explanations provide complementary information, since they
take distinct approaches to explaining model behavior. Hence, we test a Composite method
that combines LIME and Anchor with our decision boundary and prototype explanations. We
make two adjustments to methods as we combine them. First, we show only the last step of
each decision boundary explanation, i.e., the set of changes that flips the prediction. Second,
we train our prototype model with its feature extraction layers initialized from the neural task
model and thereafter fixed. We do so since we are interested in explaining the task model
behavior, and this tactic yields prototypes that reflect characteristics of the task model.

Text Tabular

Method n Pre Change CI p n Pre Change CI p

User Avg. 1144 62.67 - 7.07 - 1022 70.74 - 6.96 -

LIME 190 - 0.99 9.58 .834 179 - 11.25 8.83 .014
Anchor 181 - 1.71 9.43 .704 215 - 5.01 8.58 .234
Prototype 223 - 3.68 9.67 .421 192 - 1.68 10.07 .711
DB 230 - −1.93 13.25 .756 182 - 5.27 10.08 .271
Composite 320 - 3.80 11.09 .486 254 - 0.33 10.30 .952

Table 4.1: Change in user accuracies after being given explanations of model behavior, relative
to the baseline performance (Pre). Data is grouped by domain. CI gives the 95% confidence
interval, calculated by bootstrap using n user responses, and we bold results that are significant
at a level of p < .05. LIME improves simulatability with tabular data. Other methods do not
definitively improve simulatability in either domain.

4.4 Experimental Design

In this section, we describe our datasets, task models, user pool, and experimental design.

4.4.1 Data and Task Models

We perform experiments for classification tasks with text and tabular data. The first dataset
consists of movie review excerpts [143]. The dataset includes 10,662 reviews with binary
sentiment labels, which we split into partitions of 70%, 10%, and 20% for the train, validation,
and test sets, respectively. We use the same neural architecture as in Yang et al. [223], limited
to use with single sentences. The second dataset is the tabular Adult data from the UCI ML
repository [48]. This dataset contains records of 15,682 individuals, and the label is whether

12

Forward Simulation Counterfactual Simulation

Method n Pre Change CI p n Pre Change CI p

User Avg. 1103 69.71 - 6.16 - 1063 63.13 - 7.87 -

LIME 190 - 5.70 9.05 .197 179 - 5.25 10.59 .309
Anchor 199 - 0.86 10.48 .869 197 - 5.66 7.91 .140
Prototype 223 - −2.64 9.59 .566 192 - 9.53 8.55 .032
DB 205 - −0.92 11.87 .876 207 - 2.48 11.62 .667
Composite 286 - −2.07 8.51 .618 288 - 7.36 9.38 .122

Table 4.2: Change in user accuracies after being given explanations of model behavior, relative
to the baseline performance (Pre). Data is grouped by simulation test type. CI gives the 95%
confidence interval, calculated by bootstrap using n user responses. We bold results that are
significant at the p < .05 level. Prototype explanations improve counterfactual simulatability,
while other methods do not definitively improve simulatability for one test.

their annual income is more than $50,000. We use the same data processing scheme and neural
network architecture as Ribeiro et al. [167]. Model accuracies are given in the Appendix.

4.4.2 User Pool

We gathered over 2100 responses via in-person tests with 32 trained undergraduates who had
taken at least one course in computer science or statistics.1 Each user was randomly assigned
to one of the ten conditions corresponding to our dataset-method pairs. Once each condition
had at least 3 full tests collected, we allocated remaining participants to the Composite
method. In order to ensure high quality data, we employed a screening test to check for
user understanding of their explanation method and test procedure. Two participants were
screened out due to low scores. We also excluded data from a user whose task completion
time was extremely low. We paid all users $15 USD per hour. Ten users were tested again
with a new dataset and explanation method, giving us a total of 39 user tests. Some users
had to exit the experiment before finishing all of the tasks; for data analysis purposes, we
consider only task items answered in both Pre and Post test phases.

4.4.3 Simulation Tests

We collect 1103 forward test and 1063 counterfactual test responses in total.

Forward Simulation. This test is represented in Figure 4.1. The test is split into four
phases: a learning phase, a Pre prediction phase, a learning phase with explanations, and a
Post prediction phase. To begin, users are given 16 examples from the validation set with
labels and model predictions but no explanations. Then they must predict the model output
for either 16 or 32 new inputs, with the number chosen based on user time constraints.
Users are not allowed to reference the learning data while in prediction phases. Next, they
return to the same learning examples, now with explanations included. Finally, they predict
model behavior again on the same instances from the first prediction round. By design, any
improvement in user performance in the Post prediction phase is attributable only to the
addition of explanations. We show a screenshot of the user testing interface in the Appendix.

1We require this advanced background because explanations rely on conditional probabilities, approximations
of probabilities, and other quantitative concepts.

13

Text Ratings Tabular Ratings

Method n µ CI σ n µ CI σ

LIME 144 4.78 1.47 1.76 130 5.36 0.63 1.70
Anchor 133 3.86 0.59 1.79 175 4.99 0.71 1.38
Prototype 191 4.45 1.02 2.08 144 4.20 0.82 1.88
DB 224 3.85 0.60 1.81 144 4.61 1.14 1.86
Composite 240 4.47 0.58 1.70 192 5.10 1.04 1.42

Table 4.3: User simulatability ratings by data domain, on a scale of 1 to 7. The mean and
standard deviation for ratings are given by µ and σ. The 95% confidence interval for the
mean is given by CI, as calculated by bootstrap.

Counterfactual Simulation. Represented in Figure 4.1, this test requires users to predict
how a model will behave on a perturbation of a given data point. The test consists of Pre and
Post prediction rounds, where the only difference between them is the addition of explanations.
In both rounds, we provide users with the same 32 inputs from the test dataset (or 16 due
to time constraints), their ground truth labels, the model’s prediction, and a perturbation
of the input. See the Appendix for a description of the perturbation generation algorithm.
Users then predict model behavior on the perturbations. In the Post round, users are given
the same data, but they are also equipped with explanations of the model predictions for the
original inputs. Therefore, any improvement in performance is attributable to the addition of
explanations.

Data Balancing. One critical aspect of our experimental design is our data balancing.
We aim to prevent users from succeeding on our tests simply by guessing the true label for
every instance. To do so, we ensure that true positives, false positives, true negatives, and
false negatives are equally represented in the inputs. Likewise, for the counterfactual test, we
sample perturbations such that for any instance, there is a 50% chance that the perturbation
receives the same prediction as the original input. We confirm user understanding of the data
balancing in our screening test.

Data Matching. Within each data domain, all users receive the same data points throughout
the experiment. This design controls for any differences in the data across conditions and
users, though this does reduce the information added by each test, making our confidence
intervals relatively wide given the same sample size. We also match data across prediction
rounds in order to control for the influence of particular data points on user accuracy between
the Pre and Post phases.

4.4.4 Subjective Simulatability Ratings

Users see explanations in two phases of the tests: the second learning phase in the forward
test, and the Post phase of the counterfactual test. In these stages, we ask users to give
subjective judgments of the explanations. They rate each method on a 7 point Likert scale,
in response to the question, “Does this explanation show me why the system thought what
it did?” We explain that users should give higher ratings when the explanation shows the
reasons for a model prediction, regardless of whether or not the prediction is correct.

14

4.5 Results

We report data from a total of 2166 responses from 39 user tests. Each test is for a method
and data domain pair, and contains either 16 or 32 task items, with some missingness due
to users exiting the study early. In the results to follow, we use the term Change to refer to
our estimate of explanation effectiveness: the difference in user accuracy across prediction
phases in simulation tests. We perform two-sided hypothesis tests for this quantity by a
block bootstrap, resampling both users and unique task items within each condition [50]. In
addition, since users complete the first prediction round in either simulation test without
access to explanations, we estimate the mean Pre accuracy for each method with a random
effects model. This allows us to share information across methods to yield more precise
estimates of test performance.

Below, we analyze our experimental results and answer three questions: 1) Do explanations
help users? 2) How do users rate explanations? 3) Can users predict explanation effectiveness?

4.5.1 Do explanations help users?

We show simulation test results in Tables 4.1 and 4.2. In Table 4.1, we group results by data
domain, and in Table 4.2, we group results by test type.

Our principal findings are as follows:
1. LIME with tabular data is the only setting where there is definitive improvement in forward

and counterfactual simulatability. With no other method and data domain do we find a
definitive improvement across tests.

2. Even with combined explanations in the Composite method, we do not observe definitive
effects on model simulatability.

3. Interestingly, our prototype method does reliably well on counterfactual simulation tests in
both data domains, though not forward tests. It may be that the explanations are helpful
only when shown side by side with inputs.

These results suggest that: (1) many explanation methods may not noticeably help users
understand how models will behave, (2) methods that are successful in one domain might
not work equally well in another, (3) combining information from explanations does not
result in overt improvements in simulatability. Yet, given our wide confidence intervals, these
results should be considered cautiously. It may also be that other methods do in fact improve
simulatability, but we have not precisely estimated this. For example, our Prototype and
Composite methods do the best on average with text data, though we cannot be confident
that they improve simulatability.

Note that estimates of explanation effectiveness could be influenced by users simply
regressing to the mean accuracy between prediction rounds. We find that our primary results
are not skewed by this phenomenon: the highest estimates of Change in each data domain
and test type come from conditions where mean Pre test performance was either above the
overall mean or, in one case, within 1.15 percentage points. This potential problem is further
mitigated by our random effects model of Pre test performance, which pulls low Pre test
means toward the overall mean.

4.5.2 How do users rate explanations?

It seems that, as intended, users rated explanations based on quality rather than model
correctness, as we observe no significant difference in ratings grouped by model correctness

15

(table in Appendix). In Table 4.3, we show user ratings for each method and data domain.
We observe that: 1) ratings are generally higher for tabular data, relative to text data,

2) the Composite and LIME methods receive the highest ratings in both domains, and 3)
variance in explanation ratings is quite high, relative to their scale.

4.5.3 Can users predict explanation effectiveness?

We answer this question by measuring how explanation ratings relate to user correctness in
the Post phase of the counterfactual simulation test. In this phase, users rate explanations of
model predictions for an original input and predict model behavior for a perturbation of that
input. If ratings of explanation quality are a good indicator of their effectiveness, we would
expect to see that higher ratings are associated with user correctness.

We do not find evidence that explanation ratings are predictive of user correctness. We
estimate the relationship via logistic regression with user correctness and ratings. We test
models with both absolute ratings and ratings normalized within users, since ratings lack an
absolute scale between users. With 640 text data points, we estimate with 95% confidence
that moving from a rating of 4 to 5 is associated with between a −2.9 and 5.2 percentage point
change in expected user correctness. Using normalized ratings, we find that moving from the
mean explanation rating to the first standard deviation is associated with between a −3.9
and 12.2 percentage point change. With 515 tabular data points, we estimate that a change
in rating from 4 to 5 is associated with between a −2.6 and 5.3 percentage point change in
expected user correctness. Of course, we have not shown that there is no association. Yet
it’s important to note that if there is no relationship between user ratings and simulatability,
then simply querying humans about explanation quality will not provide a good indication of
true explanation effectiveness.

4.6 Qualitative Analysis

When do explanations succeed at improving user accuracy, and when do they fail at doing so?
Below, we present example counterfactual test items, and we analyze how the explanations
may have pointed to the reasons for model behavior.

4.6.1 Explanation Success Example

For the example below, 5 of 6 Post test responses for Prototype and LIME were correct that
the model output did not change for the counterfactual, up from 3 of 6 in the Pre test.

Original (ŷ = pos): “Pretty much sucks, but has a funny moment or two.”

Counterfactual (ŷc = pos): “Mostly just bothers, but looks a funny moment or two.”

LIME identifies “funny” and “moment” as positive words, with weights adding to 1.04 after
including the baseline. The notable negative word is “sucks” (w = −.23), which changes to a
similar word (“bothers”). All together, LIME suggests the prediction would stay the same
since the positive words are unaffected and the only important negative word has a similar
substitute.

The Prototype model gives the most activated prototype: “Murders by Numbers isn’t
a great movie, but it’s a perfectly acceptable widget.” It identifies “but” and “funny” as
important words for the prototype’s activation. The counterfactual is still similar to the
prototype in key ways, suggesting the prediction would not change.

16

4.6.2 Explanation Failure Example

For the item below, only 7 of 13 responses were correct after seeing explanations, with no
method improving correctness relative to the Pre test accuracy. Users needed to predict that
the model prediction changed to negative for the counterfactual.

Original (ŷ = pos): “A bittersweet film, simple in form but rich with human events.”

Counterfactual (ŷc = neg): “A teary film, simple in form but vibrant with devoid events.”

Anchor gives one word as a condition for the original positive prediction: “bittersweet.”
But what happens when “bittersweet” changes to “teary”? The Anchor explanation does
not actually apply to this counterfactual scenario, as its probabilistic description of model
behavior is conditioned on the word bittersweet being present.

LIME gives five words, each with small weights (|w| < .04), while the baseline is .91.
This suggests that LIME has failed to identify features of the input that are necessary to the
model output. Among these five words are the three that changed between sentences, but we
would not suspect from their weights that the changes made in the counterfactual would flip
the model output.

Decision Boundary gives a counterfactual input with a negative prediction: “A sappy
film, simple in link but unique with human events.” However, it is difficult to tell whether this
counterfactual sentence is similar in decision-relevant ways to the proposed counterfactual
sentence.

The Prototype model gives the activated prototype for the original prediction: “Watstein
handily directs and edits around his screenplay’s sappier elements...and sustains Off the Hook ’s
buildup with remarkable assuredness for a first-timer.” No important words are selected.
We are left without a clear sense of why this was the most similar prototype and what
circumstances would lead to the model output changing.

These examples reveal areas for improvement in explanations. Better methods will need to
distinguish between sufficient and necessary factors in model behavior and clearly point to the
ways in which examples share decision-relevant characteristics with new inputs. Further, they
must do so in the appropriate feature space for the problem at hand, especially for models of
complex data.

4.7 Discussion

Forward Tests Stretch User Memory. We show users 16 examples during learning phases
but do not allow them to reference the learning data during prediction phases. Reasonably,
some users reported that it was difficult to retain insights from the learning phase during
later prediction rounds.

Generating Counterfactual Inputs. It may be difficult to algorithmically construct
counterfactual inputs that match the true data distribution, especially when seeking to change
the model prediction. Our text counterfactuals are regularly out of the data distribution, in
the sense that no real movie review would exhibit the word choice they do. We still consider
these inputs to be of interest, for the reason that a model will handle such inputs in some
manner, and we aim to assess all possible model behaviors in our analysis.

Fair Comparison of Explanation Methods. In our forward simulation treatment phases,
we provide users with 16 explained instances and allow them to read at their own pace. We
control for the number of data points between methods, but one could instead control for
user exposure time or computation time of explanation generation. Further, for LIME and

17

Anchor, there are approaches for efficiently covering the space of inputs with a limited budget
of examples [167]. We opt not to use them since 1) they are not applicable to the Decision
Boundary and Prototype methods, which lack a similar notion of coverage, and 2) it is not
clear whether these approaches are useful for text data. It may be that when using such
approaches, LIME and Anchor perform better on forward simulation tasks.

4.8 Conclusion

Simulatability metrics give a quantitative measure of interpretability, capturing the intuition
that explanations should improve a person’s understanding of why a model produces its
outputs. In this chapter, we evaluated five explanation methods through simulation tests with
text and tabular data. These are the first experiments to fully isolate the effect of algorithmic
explanations on simulatability. We find clear improvements in simulatability only with LIME
for tabular data and our Prototype method in counterfactual tests. It also appears that
subjective user ratings of explanation quality are not predictive of explanation effectiveness in
simulation tests. These results suggest that we must be careful about the metrics we use to
evaluate explanation methods, and that there is significant room for improvement in current
methods.

18

5 Natural Language Explanation Methods

This second contribution extends my previous work on faithfulness evaluation of model
explanations to cover natural language explanations that are generated by language models
to explain their own answers to problems. Natural language explanations are especially
useful since they are a natural medium for communicating with people, and natural language
explanations are much more flexible than previous “local” explanation methods (they can
communicate more complex reasoning processes). A potential limitation of these explanations
is that it may be difficult to communicate certain decision-making processes in natural language
(e.g. perception, or decisions relying on concepts that are not intuitive to people). Where
explanations are limited, we will need also need to employ other mechanisms for ensuring
that models are working as intended, such as testing and redteaming.

5.1 Introduction

Deep neural models have achieved impressive success in many areas. However, their inter-
pretability and explainability have remained broadly limited. To make neural models more
interpretable, previous works have proposed methods for explaining model decisions, e.g.,
through various feature importance estimates [77, 165] or model-generated natural language
(NL) [76, 100]. Early work on generating NL explanations focused on providing explanations
that were both descriptive of an image and discriminative as labels [76]. Since then, a variety
of datasets have been collected with free-form human generated explanations accompanying
each data point [22, 100, 230, 210, 163]. Models have been proposed for these datasets with
two aims: (1) to teach models how to explain their own decisions in natural language, by
offering demonstrations of humans doing this, and (2) to increase model accuracy on the task,
by making use of additional information in human explanations.

Past works have proposed varying methods for generating NL explanations, which can be
represented by distinct graphical models. In our work, we explore four graphical models, shown
in Figure 5.1. Each model generates explanations in either a reasoning (Re) or rationalizing
(Ra) mode, where rationalizing models explicitly condition explanations on a label and
reasoning models condition only on the input. Approaches further differ by whether they
use explanations as inputs to a task model (ST) or as additional supervision in a multi-task
framework (MT). Two of these models are drawn from prior works: MT-Ra [22] and ST-Re
[163]. We introduce ST-Ra and also test MT-Re as the reasoning counterpart to MT-Ra.
To fairly compare the approaches, we implement each graphical model with a state-of-the-art
pretrained T5 model [162] (details in Section 5.3).

Generated explanations have typically been evaluated by automatic measures of similarity
with human explanations. Most commonly, phrase-matching metrics such as BLEU [144] are
used. In a few cases, human evaluations have been employed, also primarily to assess the
similarity of explanations to what humans would say. On the basis of these evaluations, past
works have suggested their models produce “justifications of its classification decisions” [22]
and “explanations to justify its predictions” [163]. While useful starting points, we argue that
these evaluations are insufficient, because they do not necessarily indicate anything about a
model’s true internal reasoning. For example, suppose the ground-truth label is A, while a
model predicts B; a higher BLEU score will be observed when the model gives an explanation

19

Training Phase 1
Training Phase 2

Figure 5.1: Graphical models representing varying roles of explanations, where the task input
is denoted by x, task output by y, and explanation by e. We introduce a new rationalizing
model, ST-Ra, while also testing a reasoning multi-task model, MT-Re, and two other
methods from past works [22, 163].

to support human label A, instead of model prediction B. This point is substantiated by
Jacovi and Goldberg [84], who advocate for evaluations of explanation faithfulness rather
than plausibility.

To resolve this evaluation problem, we introduce the leakage-adjusted simulatability (LAS)
metric, which is better suited for identifying when explanations actually support model
behavior. LAS scores combine two key mechanisms: they measure simulatability, which
reflects how well an observer can use model explanations to predict the model’s output,
while controlling for explanation leakage, which occurs when explanations directly leak the
output. This metric is inspired by prior work on model interpretability [46, 65], but to
date no simulatability analysis has been carried out for NL explanations. We automate our
evaluation by using a pretrained language model as the observer, serving as a proxy for
a human. Using LAS scores, we evaluate model-generated as well as human explanations
for CommonSenseQA (CQA) [200, 163] and SNLI [20, 22] tasks. We provide two human
evaluations to validate our model-based approach. The first is an expert simulatability
evaluation, where we manually play the role of the simulator in our LAS metric computation.
The second is a subjective ratings task, where we collect data from Mechanical Turkers.

Lastly, since we propose a metric for evaluation, the question naturally arises of whether an
objective besides standard language modeling is better suited to improving explanations under
this metric. While our formulation of LAS is not differentiable, we present a proxy objective
that involves using a simulator during training. This training procedure is neatly interpreted
as a multi-agent game. Agents share a common objective, which is for the simulator to predict
the task model’s output using the explanation it receives, but we penalize agents for pursuing
the trivial solution, i.e., restating outputs without giving additional information.

We summarize our key results as follows:

1. We introduce the LAS score, which captures how explanations improve simulatability while
controlling for direct label leakage, and we use it to evaluate four generative models.

2. We show that our LAS scores provide a deeper understanding of explanation effectiveness
than metrics like BLEU and discuss their relationship with our expert simulation analysis
and crowdsourced human quality ratings.

3. We find that our ST-Ra approach achieves nearly human-level LAS scores, and that
rationalizing models outperform reasoning models.

4. We observe no trade-off between interpretability and accuracy, though this also means that
existing methods struggle to learn from human explanations.

5. In a multi-agent game, we show that optimizing explanations for simulatability and

20

penalizing trivial explanations can improve LAS scores in some settings.

5.2 Related Work

Generating Natural Language Explanations. Early work on this topic proposes to
generate explanations for images that are descriptive as captions and discriminative as labels
[76]. However, they seek to explain the image’s label rather than a classifier’s output. Ling et al.
[119] introduce induction approaches for solving math problems and generating explanations
of solutions. Two works focus on multi-modal problems, explaining visual question answering
[147] and self-driving car decisions [100]. A few recent works focus on explanations for language
understanding tasks. Camburu et al. [22] introduce e-SNLI, extending the SNLI dataset [20]
with free-form human explanations, and they provide an LSTM-based model that jointly
predicts labels and generates explanations, shown by MT-Ra in Figure 5.1. Rajani et al. [163]
propose the CoS-E dataset, collecting human explanations for CommonSenseQA [200], and
they introduce the CAGE model, depicted as ST-Re in Figure 5.1. We build on these works
by evaluating both ST-Re and MT-Ra as well as models we introduce, ST-Ra and MT-Re.
We implement each graphical model with strong pretrained-T5 models, and for completeness,
we also test methods with GPT2 and BERT (results in Appendix B.3) [160, 41].

Evaluating Explanations. There is now a wealth of work on evaluating explanations of
machine learning models [165, 46, 80, 84]. For NLP tasks, past works focused on extractive
rather than generative explanations [141, 42]. Such methods extract parts of the model
input that are important to the output according to some criterion. However, they are not
suited to evaluate NL explanations that are not part of the input, which motivates our new
simulatability metric.

Measures of similarity between model-generated and human explanations are used to
evaluate nearly every method introduced above, with BLEU being the most common [76,
119, 147, 100, 22, 163]. In a few cases, human evaluations are employed for similar purposes
[76, 147, 100]. While these evaluations provide a good starting point, they do not support
previous claims that explanations show the reasons for model behavior because they evaluate
plausibility rather than faithfulness. We introduce a leakage-adjusted simulatability metric
(LAS) in response to this issue. As observed by Jacovi and Goldberg [83], faithfulness and
simulatability are closely related, but simulatability primarily captures causal attribution of
explanations and not necessarily social attribution. Simulatability-based evaluations have
been conducted before [166, 65], but we are the first to consider NL explanations and employ
model-based controls for label leakage. Two contemporaneous works also explore relevant
topics. Narang et al. [139] train a T5 model to generate explanations in a set-up analogous
to our MT-Ra setting. They also notice the shortcomings of BLEU and collect binary
human ratings of whether explanations “support” model outputs. Kumar and Talukdar
[102] introduce label-specific versions of the method in Rajani et al. [163], one of which
shares the graphical structure of our ST-Ra model. However, their evaluation focuses on
whether humans can recover ground truth labels from generated explanations alone, which
they term “explanation accuracy.” Given these interesting concurrent works, our contributions
are still distinguished by our joint focus on (1) simulatability-based evaluation, (2) controls
for explanation label leakage, and (3) comparison of several distinct graphical models.

Multi-Agent Communication. The most relevant work to our multi-agent game concerns
discrete communication policies with natural language or artificial protocols grounded in NL.
Lazaridou et al. [107] ground a communication protocol in natural language via an auxiliary

21

T5
explain: Where would I not want a fox? The choices are

hen house, England, and mountains.

task: Where would I not want a fox? The choices are
hen house, England, and mountains.

The answer is: hen house

The answer is hen house because the fox would eat the hens

Context for rationalizing Human explanation

My commonsense tells me that the fox would eat the hens

Context for reasoning Human explanation

The answer is: hen house

Figure 5.2: Inputs and outputs for the T5 Multi-task framework. In the reasoning mode,
explanations are not conditioned on the model’s prediction, whereas in the rationalizing mode
they are dependent on the model output.

image classification task. In concurrent work, Lazaridou et al. [108] learn NL protocols for
an image-based reference game by pretraining with image captions. While our approach
shares the premise that language use is goal-oriented, we optimize full explanations of model
outputs rather than descriptions of images in reference games. Another contemporaneous
work optimizes for simulatability in a multi-agent setting, but they use extractive rather than
generative explanations [204].

5.3 Modeling With Explanations

In this section, we delineate our baseline model and the four graphical models we study. The
graphical models are depicted in Figure 5.1. We also summarize the key features of each
approach in Table 5.1. We show examples of task inputs and outputs along with explanations
in Table 5.2. In general, we initialize models from T5-Base, which is a Transformer-based
sequence-to-sequence model, pretrained with a large-scale English corpus.

Baseline. The baseline model simply predicts y given x. We adopt the approach of Raffel
et al. [162] for fine-tuning to multiple-choice problems, which is to maximize the likelihood of
correct answer tokens conditioned on the task inputs. To produce predictions, however, we
compute a likelihood for each answer choice and select the most likely choice, rather than
sampling text. SNLI also fits into this framework by taking the three relations as answer
choices.

ST-Re. Rajani et al. [163] proposed a Commonsense Auto-Generated Explanation (CAGE)
framework for CQA, with a two-phase training procedure: first, with human explanations as
supervision, a model is trained to generate explanations given task inputs; then generated
explanations are supplied with task inputs to a classifier that performs the task. We represent
this framework in Figure 5.1, where we term it ST-Re to fit within our data-agnostic
model taxonomy. ST stands for serial-task (from the separate training phases) and Re for
the reasoning explanation generation. While originally composed of GPT and BERT, we
implement this approach with two separate T5 models.

ST-Ra. We extend the ST-Re approach to operate in a rationalizing mode (shown in
Figure B.1 in Appendix). Instead of generating one explanation per example, we propose
to generate explanations for each possible task output, conditioned on that output. Then,
we give each answer choice its own input sequence, which includes the task input and an

22

Method Task Set Conditioning

T5-Base Single-task -
ST-Re Serial-task e|x
ST-Ra Serial-task e|x, y
MT-Re Multi-task e|x
MT-Ra Multi-task e|x, y

Table 5.1: The graphical models and baseline we evaluate. MT and ST refer to multi-task
and serial-task, while Re and Ra refer to reasoning and rationalizing.

Model Human

Input, Output, and Explanation Leaking?LAS Leaking?LAS

Question: Marathoners feel fatigued after running twenty six miles,
but some that have pushed them self too hard might be prone to
what?

Yes 1 Yes 1

Choices: A. passing out; B. death; C. exhaustion
STRa explanation: if you are running too hard, you are likely to
be exhausted.

Question: When are people buying products more?

No -1 No -1
Choices: A. economic boom; B. disagreements; C. being able to
use
Human explanation: being able to use.

Table 5.2: Two example data points from CQA with Human or STRa label (bold in
text) and explanation. We give leakage indicators and example-level LAS scores from both
model-based (T5) and human simulators (see Section 5.4). More examples can be found in
Table B.1.

explanation supporting that answer choice. Finally, a classifier scores each input and output
sequence.

Instead of maximizing the likelihood of correct answer tokens, we find that a new learning
objective is necessary for training the task model. We renormalize the decoder likelihoods of
each answer choice ai given the encoder input si. With the set of encoder sequences S and
answer choices A, we define the probability of each answer choice as:

p(ai|A,S) =
p(ai|si)∑

ai∈A,si∈S p(ai|si)
Then we maximize the likelihood of the correct answer choice.

MT-Re. The alternative to using explanations as task model inputs is to use them as
supervision in a multi-task framework. As a counterpart to ST-Re, we test a reasoning
multi-task model, where explanations are conditioned only on the task input (shown in Figure
5.2). We use a single task-specific word prepended to the input sequence so that the encoder
hidden states will be tailored to either the task or explanation generation. For this model,
the multi-task learning objective mixes a label prediction loss Ltask (for the task itself), and a
language modeling loss LLM (for explanation generation):

LMT = αLtask + (1− α)LLM ,

23

Leakage Path
Semantics Path

Correctness
Simulator

Figure 5.3: Causal diagram of model simulation. The simulator prediction’s correctness,
1[ŷ|x, ê], is influenced by three variables: (1) the task model input, (2) the model explanation’s
semantic content, êz, and (3) whether the explanation leaks the model output, êŷ

where α is the mixing ratio to be tuned on development set. We reach a value of α = .5 on
both datasets when tuning for task accuracy.

MT-Ra. Represented in Figure 5.2, MT-Ra is a multi-task model where explanations are
conditioned on the model output. This approach originates in Camburu et al. [22], where it is
introduced as an LSTM-based model. As above, we use a task mixing weight of α = .5 for
both datasets.

5.4 LAS: Leakage-Adjusted Simulatability

While many motivations drive humans’ explanations for their behavior, we consider one central
purpose to be helping others understand one’s internal reasoning. This notion is captured by
the concept of simulatability [46]. A model is simulatable to the extent that an observer, or
simulator, can predict its outputs. The simulator can be either a human or a learned model;
we will consider both settings. From this perspective, one might use the simulator’s accuracy
to measure explanation quality. With task inputs X = {xi}, model outputs Ŷ = {ŷi}, model
explanations Ê = {êi}, simulator correctness as 1[ŷi|xi, êi],1 the accuracy is defined as:

Acc(ŷ|x, ê) = 1

N

N∑
i=1

1[ŷi|xi, êi]

However, this measure fails to distinguish between different ways in which the simulator can
successfully predict the task model output, as shown in the causal diagram in Figure 5.3. We
suggest that the simulator’s success does not reflect explanation quality when (1) the simulator
can guess behavior correctly from the input x alone, or (2) the explanation ê directly restates
the task model output, i.e., leaking the label to the simulator. What we are truly looking for
in explanations is that they provide semantic content that informs the simulator of the task
model’s output in the context of its input. Note that we do not think label leakage means
an explanation is bad. Explanations will leak more often than not, as human explanations
leak about 85% of the time for CoS-E and about 97% of the time for e-SNLI (estimated by
T5 simulator). Instead, we think the more important aspect is to evaluate the explanation’s
semantic content. For examples of leaking and nonleaking explanations, see Table 5.2.

1For the remainder of the paper, we use the indicator function in this way to describe the correctness of
predictions, which is a slight abuse of notation for the sake of brevity.

24

Simulatora fox is a common animal in England.

Task model explanation
Task model output

The answer is: hen house

simulate: Where would I not want a fox? The choices are hen house,
England, and mountains. My commonsense tells me that

Figure 5.4: A simulator model predicts a task model output, given its input and a model-
generated explanation.

To deal with issue (1) above, we introduce an input-only baseline and measure the effect
of an explanation on simulatability as 1[ŷ|x, ê]− 1[ŷ|x]. To resolve the issue (2), we propose
to control for a label leaking variable, which has the effect of blocking that causal pathway
[150]. We do so by using a proxy variable for label leakage, which is an indicator variable
for if the simulator can predict ŷ solely from ê. The correctness of this prediction suggests
that the explanation gives away the answer directly. With this approach, we can estimate
explanations’ leakage-controlled effect on simulatability by (1) grouping data by the level of
explanation label leakage, (2) computing the average difference 1[ŷ|x, ê]− 1[ŷ|x] within each
leakage group, and (3) taking the raw average of the effect across groups (to avoid favoring
the larger subset). Note that there are only two levels of label leakage, 1[ŷ|ê] = 1 (leaking)
and 1[ŷ|ê] = 0 (nonleaking), and we use model correctness rather than probabilities since T5
probabilities are uncalibrated.

Now with simulator correctness as 1[ŷi|xi, êi] or 1[ŷi|xi], and our leakage indicator as
ki = 1[ŷi|êi], we write our Leakage-Adjusted Simulatability (LAS) metric as:

LAS0 =
1

n0

∑
i:ki=0

(
1[ŷi|xi, êi]− 1[ŷi|xi]

)
LAS1 =

1

n1

∑
i:ki=1

(
1[ŷi|xi, êi]− 1[ŷi|xi]

)
LAS =

1

2
(LAS0 + LAS1)

where n0 and n1 are the number of examples in nonleaking and leaking groups respectively.
We use a pretrained T5-Base model as a proxy for a human simulator (depicted in Figure 5.4).
This approach has the advantage of scaling across large datasets with uniform quality in
predictions, and, as described in Section 5.5, it enables directly optimizing explanations for
simulatability. We validate this choice of proxy with two human subject experiments (see
Section 5.6.2). Simulator models are trained with task model outputs as labels and x and ê
combined into input sequences. In order to make sure the simulator makes good use of both
x and ê, we randomly dropout either x or ê from the input during training. When testing,
the simulator’s correctness on each example is 1[ŷi|xi, êi], and we obtain 1[ŷi|xi] and 1[ŷi|êi]
by dropping êi or xi from the input.

We will compare LAS and Acc(ŷ|x, ê) for explanations from the models introduced above
as well as human explanations. We discuss the relationship with human experiments for both
metrics in Section 5.6.2. In analysis to follow, we will also refer to example-level LAS scores,
which are given as 1[ŷ|x, ê]− 1[ŷ|x] and take values -1, 0, or 1 (see Table 5.2 for examples).
Lastly, while we use a binary proxy for label leakage, a continuous measure can be obtained
from p(ŷ|ê). After calibrating the simulator probabilities via Platt scaling [153], we perform a
sensitivity analysis of our results for bin counts between 2 and 100: LAS estimates typically
vary by less than 1 point across bin counts. For further details, see Appendix B.2.1.

25

5.5 Multi-Agent Explanation Optimization

In this section, we explore an approach to optimizing explanations for LAS, rather than
just relying on a standard language modeling loss to produce explanations. The approach is
naturally framed as a multi-agent game. Note that we do not aim to improve model accuracy
or explanations’ BLEU scores in these experiments.

SNLI CQA

Explanations LAS Score (CI) Acc(ŷ | x, ê) BLEU LAS Score (CI) Acc(ŷ | x, ê) BLEU

Human 4.31 (1.97) 98.36 - 14.73 (3.84) 90.11 -
MT-Re -15.83 (1.81) 93.72 19.54 -7.07 (3.59) 81.05 6.33
MT-Ra 4.34 (4.12) 99.97 19.41 -1.31 (4.04) 92.31 5.43
ST-Re 0.55 (0.87) 93.87 19.96 3.76 (1.83) 82.21 7.12
ST-Ra 6.74 (4.53) 99.84 20.94 10.32 (3.39) 88.53 7.14

Multi-Agent
MT-Re (SGD) -10.08 (1.72) 94.14 16.74 -6.32 (3.27) 76.63 4.44
MT-Ra (SGD) 3.03 (4.72) 99.89 16.61 3.08 (3.79) 87.68 4.43
MT-Re (RL) -10.80 (1.51) 93.45 15.41 -5.04 (3.55) 84.00 2.15
MT-Ra (RL) -0.61 (0.45) 93.05 9.83 -9.15 (2.95) 77.47 3.54

Table 5.3: Evaluations of human and model-generated explanations by LAS score, overall
simulator accuracy, and BLEU. 95% confidence intervals as calculated by bootstrap are shown
in parentheses [50].

In our game, there are two agents. The first is a task model that predicts labels and
generates explanations jointly. Here, we use MT-Re or MT-Ra. The second agent is a
simulator model that predicts the task model’s output ŷi given its explanation êi and the
model input xi, matching the previous simulation format shown in Figure 5.4. These two
agents are jointly trained during the multi-agent training procedure. The objective of the
simulator is the same as discussed in the above section, which is to predict ŷi given xi and
êi, and we randomly dropout xi or êi to ensure they are both being used. As in Section 5.3,
the task model learns to perform the task (minimizing Ltask) and generate explanations
(minimizing LLM) via supervision from ground-truth labels and human explanations. Here,
the task model also tries to minimize the simulator’s loss through its explanations. The
chief computational challenge with this approach is that explanations are sampled by greedy
decoding, and thus the loss is not differentiable with respect to the task model. We explore
two optimization methods circumventing this issue: Approximate SGD via argmax relaxation
[127] and REINFORCE [218]. Our aim is for explanations to better communicate the task
model’s reasoning process, without adopting the trivial solution, i.e., directly stating its
output. Thus while we optimize explanations for simulatability, we also penalize label leakage,
which we formalize below. Note that the task model’s predictions are not optimized to agree
with the simulator; only its explanations are optimized.

Approximate SGD. With a simulator model pϕ, the simulatability loss term for explanations
is

Lexp =−
1

N

N∑
i=1

(
α log pϕ(ŷi|xi, êi)

− (1− α) log pϕ(ŷi|êi)
)

26

where α is a mixing weight between terms. To differentiate through the greedy decoding for
explanation sampling, we use one half of the Gumbel-Softmax trick [127]. During the forward
pass in training, the argmax is used as normal, while during the backward pass, we relax the
argmax to a softmax with temperature 1 for purposes of computing gradients.

Reinforce. Our second approach is to use the REINFORCE RL algorithm proposed by
Williams [218]. Here we take the simulator’s output probabilities as a reward for the task
model. Now with the same goals as above, we define the reward for xi as ri = αpϕ(ŷi|xi, êi)−
(1− α)pϕ(ŷi|êi). Then, the Lexp for task model pθ is defined as:

Lexp =
1

N

N∑
i=1

−ri log pθ(êi|xi, ŷi)

Finally, with either method, the full learning objective of the task model is LTaskModel =
λ1Ltask + λ2LLM + λ3Lexp. The tuning procedure and values for mixing weights are given in
Appendix B.1.5.

5.6 Experimental Results

Here, we discuss experiments conducted with each method using two (English) datasets:
The first is the CommonSenseQA (CQA) dataset of Talmor et al. [200], with explanations
collected by Rajani et al. [163] to make a combined CoS-E dataset (examples in Table 5.2).
We use the Version 1.0 of this dataset, since it has higher quality explanations than Version
1.1.2 CQA has approximately 8k/1k/1k train/dev/test data points, while NLI has roughly
549k/10k/10k train/dev/test points. Note that, in the main paper, we report results using 10%
of the SNLI training data, due to computational demands of tuning multi-task models (1 week
for convergence with 100% data), and we report CQA dev results since human explanations
are not available for test data. See Tables B.6 and B.8 in the Appendix for results for CQA
test data and SNLI with full training data, where we confirm the results discussed here.
For the model selection procedure and further training details, see Appendix B.1.3, and for
robustness checks of LAS scores across seeds and simulator architectures, see Appendix B.2.2.

5.6.1 Automatic Explanation Evaluation

Below we describe key conclusions from our evaluation of leakage-adjusted simulatability
(LAS), and we show results alongside overall simulator accuracy Acc(ŷ|x, ê) and BLEU in
Table 5.3.

Humans vs. Models. Some models do achieve roughly human-level LAS scores for CQA
and NLI. First, we find that human explanations are helpful to models: we estimate that
explanations improve humans’ simulatability by 4.31 percentage points for SNLI and by 14.73
points for CQA. Our ST-Ra method performs similarly to humans on both datasets. On
SNLI, MT-Ra also achieves about human performance. We emphasize that this does not
mean these models match human explanations in every respect. Rather, the semantics of
the explanations have a similar effect on simulator accuracy as human explanations in our
experimental settings. Additionally, we note that scores across datasets are not directly
comparable since they depend on the underlying difficulty of the task.

2In Version 1.1, about 20% of explanations belong to a small set of duplicates unrelated to the data point.
See https://github.com/salesforce/cos-e/issues/2.

27

https://github.com/salesforce/cos-e/issues/2

Leakage Human

Model 0 1

0 127 87
1 45 341

LAS Human

Model -1 0 1

-1 23 56 6
0 29 278 49
1 5 104 50

Table 5.4: Correlation between model-based and human variables resulting from the expert
simulation analysis. For the leakage variable, Spearman’s rank correlation is ρ = 0.53 (p <
1e−15). For the example-level LAS, the rank correlation is ρ = 0.29 (p < 1e−12).

Re vs. Ra. Rationalizing models outperform their reasoning counterparts on both datasets.
For MT-Re, the drop in LAS stems from non-leaking explanations – these explanations tend
to mislead the simulator, meaning p(ŷ|x, ê) is inaccurate. For ST-Re, explanations tend to
leak for examples where it is already easy to guess model behavior from x, i.e. p(ŷ|x) sets a
high baseline.

BLEU vs. Simulatability. BLEU is not correlated with our LAS metric, which supports
our conjecture that BLEU does not reflect the effect of explanations on simulatability. LAS
also does not correlate with the simulator accuracy, Acc(ŷ|x, ê), which is expected given how
the simulator accuracy is heavily influenced by explanation leakage.

5.6.2 Human Validation of LAS

We validate our model proxy variables with two human evaluations, an expert simulation
experiment, and a crowdsourced subjective rating test.

Expert Simulation. We (meaning the first three authors as expert annotators) validate our
use of models as simulators of both model-generated and human explanations by manually
playing the role of the simulator for 600 data points. With effectively the same design as
our automatic metric computation, we simulate humans and our ST-Ra model with both
datasets, only with no training period in this case. Each annotator is randomly assigned a
role for each data point (whether they see the input, explanation, or both), and points are
sampled such that an annotator never sees the same point in different roles. The sample is
roughly balanced across the strata of our model’s proxy variables. We note that ideally, we
would use only expert human simulators instead of proxies, though even annotating less than
1% of the data across conditions required 1800 individual responses.

The correlations between proxy variables and our own are shown in Table 5.4. We group
the data across subsets (e.g., explanation source and dataset) since the trends were similar
between them. We find a strong correlation between the leakage proxy variable and the
human leakage variable, with a Spearman rank correlation of ρ = 0.53 (p < 1e−15), and
we observe a moderate correlation between the model-based and human example-level LAS,
ρ = 0.29 (p < 1e−12) [33].

The disagreements are concentrated in false negatives for leakage, where we identify leaking
explanations when the model does not. With LAS, model scores of -1 and 1 often end up as a
human 0, meaning that an explanation confuses the model but not the human rater (for -1),
or the human can predict based on the input alone when the model cannot (for 1). Because
of this tendency toward 0, human LAS will shrink slightly toward 0 in expectation, relative to
the model LAS (see row-normalized Table B.7 in Appendix). We also observe a degree of
pragmatic drift between models and humans. Lazaridou et al. [108] operationalize this as the

28

Example-Level LAS Score

Data & Leakage -1 0 1

CQA: Leaking 2.39 (.36) 2.65 (.08) 2.58 (.15)
Non-leaking 2.31 (.21) 2.40 (.10) 2.28 (.34)

SNLI: Leaking 2.96 (.45) 3.25 (.06) 3.18 (.15)
Non-leaking 2.78 (.31) 2.94 (.12) 2.61 (.46)

Table 5.5: Human explanation ratings grouped by dataset, label leakage. 95% confidence
intervals in parentheses.

difference in performance between human and model listeners in a reference game. Similarly,
we can use simulator accuracy given the input and explanations. We find that humans are
better simulators of humans, and models are better at predicting model outputs. Across
datasets and simulators, the difference in accuracies is 12.83 percentage points on average.

Lastly, one may notice from Table 5.4 that our predictions of the human label are sometimes
wrong. In fact, our own task accuracy is 70% (±7.33) for SNLI and 72% for CQA (±7.19).
These accuracies are similar to those obtained by Pavlick and Kwiatkowski [149] when re-
annotating the SNLI dataset. Interestingly, they find that tasks such as these can have
distributions over labels under human annotation, rather than consensus.

Human Subjective Quality Ratings. We collect human ratings from Mechanical Turkers
for 200 test examples for both CQA and SNLI. Each example includes shuffled, unlabeled
explanations (one from each model, plus humans, for a total of five), which we ask workers to
separately rate on a 5-point Likert scale. After collecting 3 responses per item, we apply a
worker quality filter, obtaining 902 ratings total. Further collection details are provided in
Appendix B.4.

We investigate whether LAS and simulator accuracy are correlated with human explanation
ratings. For each example, we obtain human ratings, the example’s LAS score 1[ŷ|x, ê]−1[ŷi|xi]
(taking values -1,0,1), and simulator prediction accuracies, 1[ŷ|x, ê], 1[ŷ|x], and 1[ŷ|ê] (taking
values 0 or 1).

Human rating trends across example-level LAS scores are shown in Tables 5.5. A first
observation is that LAS scores do not correlate well with human ratings. Curiously, though,
simulator accuracies correlate with human ratings. We show these trends in Table 5.6, along
with regression coefficients for predicting ratings from simulator accuracies. For both datasets,
1[ŷ|ê] best correlates with human ratings and the association with 1[ŷ|x, ê] is only significant
for SNLI. Since good explanations tend to leak the label, it is not surprising that ratings
correlate with label leakage. However, it is surprising that this association is stronger than
the relationship with overall accuracy, 1[ŷ|x, ê]. Together, these results help explain why
models may struggle to learn from human explanations, since models may focus on label
leakage in human explanations at the expense of other information. They may also suggest
that to collect human ratings that do not correlate with label leakage, a highly controlled
environment for human ratings may be required.

5.6.3 Accuracy-Interpretability Trade-off

Past works on model interpretability have observed trade-offs between accuracy and model
constraints for interpretation purposes [12, 88]. Yet, Rudin [172] and Jacovi and Goldberg
[83] argue that we need not always face such a trade-off. Our findings provide quantitative
evidence supporting these prior qualitative arguments. We observe consistently small changes

29

Simulator Correctness Regression Coef.

Prediction 0 1 β p

CQA: ŷ|x, ê 2.34 (.11) 2.60 (.06) .14 .07
ŷ|x 2.38 (.09) 2.63 (.07) .09 .20
ŷ|e 2.44 (.10) 2.58 (.07) .21 <.001

SNLI: ŷ|x, ê 2.85 (.14) 3.22 (.05) .20 .03
ŷ|x 2.90 (.11) 3.24 (.06) .10 .15
ŷ|e 3.02 (.11) 3.21 (.08) .27 <.001

Table 5.6: Human ratings broken down by dataset and simulator prediction, shown alongside
regression results. 95% confidence intervals in parentheses.

in accuracy for our four models, and the largest changes, -.47 (p = .3124) for SNLI and
-2.10 for CQA (p = .3272), are not statistically significant. We also test methods using
human explanations purely for improving accuracy, e.g., through Masked Language Modeling
objectives that have been successful for pretraining models. We find that this objective does
not lead to statistically significant accuracy improvements, suggesting models still struggle to
truly learn from human explanations (results are shown in Table B.8).

5.6.4 Multi-Agent Game

Multi-agent game results appear in Table 5.3, though we note that RL results should be
cautiously interpreted as we observe unstable training behavior from this method. We find
that optimization with SGD can reduce label leakage (from, e.g., 85.58% to 75.21% for CQA
MT-Ra) while slightly improving LAS scores, but only one of four changes in LAS scores is
statistically significant, for MT-Re on SNLI. This approach does pull BLEU scores down. No
statistically significant differences in accuracy are found; the largest change, a 3.37 point drop
on CQA, has a p-value of .1287. We note that this kind of optimization may have the effect
of increasing pragmatic drift, as is found for jointly optimized agents in [108].

5.7 Conclusion

We introduce a leakage-adjusted simulatability metric to evaluate the influence of natural
language explanations on model simulatability while controlling for explanations leaking the
model outputs. We validate our metric with two human subject experiments, and find that: (1)
our ST-Ra model attains similar LAS scores to human explanations, (2) rationalizing methods
do better than reasoning methods, (3) no statistically significant relationship emerges between
simulatability and accuracy, (4) our automatic metric correlates with expert simulation results,
(5) the strongest predictor of crowdsourced explanation ratings is whether explanations leak
the answer choice, and (6) optimizing explanations for simulatability can improve LAS scores.

30

6 Adding Explanation Data to Discriminative Learning

This third contribution addresses the mirror problem of evaluating LM-generated explanations
(Chapter 5): we also want LMs to learn from human explanations.

6.1 Introduction

A long line of past work has sought to use free-text explanations, rationales, and other similar
data to improve machine learning models. Proposed methods use explanations to constrain or
regularize the learned model [228, 188, 7, 232, 192, 117], to automatically label data for data
augmentation [63, 210, 6], as additional supervision [139, 68, 157] or intermediate structured
variables [22, 163, 217], and simply as model inputs [173, 32, 238].

However, there are many tasks in NLP where improvements in performance prove elusive
even when using thousands of explanations as additional data [139, 68]. A few observations
could explain this situation: (1) the modeling space has not been fully explored for these tasks,
but improvements are possible; (2) pretrained language models already store the knowledge
that the explanations would have provided, so they do not need them; (3) the language models
do not need any information that is not already learnable from the task’s input-output pairs.
We do not yet know which explanation is best, and therefore it would be helpful to more
deeply understand the motivations behind existing modeling approaches.

In this chapter, we (1) present a formal framework for characterizing approaches to
learning from explanation data, and (2) we propose a synthetic task for studying how models
learn from natural language data. Specifically, we first present graphical models for various
approaches where explanation data is used either as model inputs, targets, or priors, and
we characterize existing methods according to these graphical models. Then, based on past
results, we suggest which models might be most appropriate for explanation data. Next,
we present a synthetic task which shares important properties with NLP tasks involving
explanation data. Constructing this task helps us carefully specify the manner in which we
expect explanations to be useful to models. We provide simple experimental verification that
the task is solvable by existing Transformer models when using explanations as additional
data but very difficult to solve without them. Our aim is to outline promising approaches
in the area and contribute a concrete test bed to assist others in developing new models for
learning from natural language explanations.

6.2 Formalizing the Roles of Explanations

In what follows, we discuss our framework for modeling with explanations and relevant work
(Sec. 6.2.1), as well as promising approaches for learning from explanations (Sec. 6.2.2).

What Is an Explanation? We use the term “explanation” to refer to the data one might
collect if asking a person to answer the question, “Why does data point x have label y?” This
is a formulation of the explanation as an answer to a why-question of the kind discussed in
Miller [131]. Rather than try to give a formal definition of the kind of data generated from
this question, we proceed with some illustrative examples, shown in Fig. 6.1.

31

Illustrative Example #2

Illustrative Example #1

When asked for travel times, give them in terms of travel by car.

How many hours does it take to travel from Addis Ababa to Dessie?

About 8 hours.

Addis Ababa and Dessie are 400km apart by road, and assuming you could
average 50kph in a car, the travel time would be about 8 hours.

What are the names of people in the text?

She was in particular interested in Babbage's work on the Analytical Engine.
Lovelace first met him in June 1833, through their mutual friend, and her
private tutor, Mary Somerville.

Babbage, Lovelace, Mary Somerville.

Names will refer to people, who can work on things, meet others, and be
tutors. Not all capitalized things are names. Engines are not people, and
here June is a date.

Figure 6.1: Hypothetical data and explanations. Here, x is an input that one might expect a
model to produce the correct output for after fitting to (x, y) pairs. For some models, x may
be sufficient, while others may benefit from additional information provided by e.

6.2.1 Formal Framework and Relevant Work

In this section, we lay out our theory of how explanations may be used in modeling a task, in
a standard supervised learning setup for obtaining a MAP estimate of model parameters:

θ̂ = argmax
θ

p(θ|X,Y)

p(θ|X,Y) ∝ p(Y |X, θ)p(θ)

where Y is a set of labels for inputs X. We refer to the role of Y in this probabilistic model
as the target, X as an input, and p(θ) as a prior. Below we describe existing approaches to
adding explanations into this framework. An overview of the corresponding graphical models
is shown in Fig. 6.2.

Using Explanations as Targets. Explanations are often used as additional supervision
(shown as Multi-Task in Fig. 6.2). For instance, Pruthi et al. [157] consider using attention
weight explanations (from a model) as targets in a multi-task framework, and they observe
accuracy improvements in what is essentially model distillation. Meanwhile, natural language
explanations appear as targets in a multi-task framework, using datasets with explanations for
each data point [22, 139, 68, 217]. None of these works find improvements in task performance
from incorporating explanations. It is perhaps even concerning that a model could learn to
generate coherent “explanations” without the learning of this ability influencing the models
that are found for the task.

Using Explanations as Inputs. Additional inputs may be valuable for solving some
tasks. One family of approaches uses explanations as model inputs for each data point (Per
Data Point Input in Fig. 6.2). Talmor et al. [202] systematically study RoBERTa’s ability
to combine pieces of knowledge for a task by including relevant factoids in the text input.
Co-Reyes et al. [32] provide online natural language feedback to RL agents, and Rupprecht
et al. [173] take a similar approach to interactive image segmentation with language feedback.

More commonly, approaches do not use human explanations at test time. In ExpBERT
[138], a model conditions on vector representations of an input x and a single “global” set of

32

Multi-Task

Structured Variable

Global Set

Per Label
Structured Variable

Per Data Point InputRetrieval

Explanation as Input

Explanation as Target Explanation as Prior

Data Augmentation
Regularizer

or Hypernetwork

Few-shot
In-context Learning

Figure 6.2: Graphical models for several approaches to using explanations as targets, as inputs,
and as priors. Typically past works do not condition on human-given explanations at test
time, unless they are designed to not leak the data point label.

explanations in order to make each prediction (Global Set in Fig. 6.2). This approach may
not scale well to large numbers of explanations, however. Zhou et al. [238] treat explanations
as latent variables, and at inference time they retrieve explanations from the training data
(Retrieval in Fig. 6.2). A number of works condition on explanations generated at test time
using generative models learned with human explanations as supervision, which are represented
as Structured Variable and Per-Label Structured Variable in Fig. 6.2 [22, 163, 102, 68, 217, 234].
While such structured variables could be useful in principle, these methods have not produced
sustained improvements in model accuracy.

Lastly, large language models have recently opened the door for using explanations in
few-shot in-context learning [21]. We represent this approach as Few-shot In-context Learning
in Fig. 6.2. We do not draw the dependencies between distinct data points in the context
that would be implied by the attention graph of Transformers, but instead represent the
dependence of each data point on the unknown task τ , which models evidently do inference
over at test time. Initial work in this direction suggests that models of a sufficiently large
size (280B parameters) can learn from explanations provided in a few-shot in-context learning

33

setting [106].
Using Explanations as Priors. We group together approaches to defining a distribution
over model parameters, including those conditioning on data, p(θ|data). This is a prior over
model weights not in the sense that the distribution is independent of data (which it is not),
but rather that the posterior parameters are conditioned on the prior. Explanations have
been used to constrain the learned model [192, 193] or to place priors over how features are
weighted or extracted [228, 188, 232, 171, 10, 183, 117, 195, 157, 194]. Other works map
directly from text to model parameters [7, 3]. These methods are all effectively described by
Regularizer or Hypernetwork in Fig. 6.2. Lastly, a few approaches learn to use explanations for
automatically labeling data for data augmentation purposes [63, 214, 6], which is effectively
fitting to data from a prior distribution given by the labeling mechanism (Data Augmentation
in Fig. 6.2).

6.2.2 Promising Models

Based on our review of existing approaches, we make a few key observations that we believe
will assist in the design of future techniques:

1. Using free-text explanations as structured variables and as targets do not appear to be
promising approaches at the moment [68, 139].

2. Free-text explanations may be useful as priors in computer vision [117], but we know of no
successful use case for tasks besides Stacey et al. [194], which effectively reduces free-text
explanations to a bag of words.

3. The only cases we know of where free-text explanations improve model performance on
NLP tasks is when they are used as model inputs via the Global Set model, [138] a Retrieval
model [238], and an In-Context Learning model using 280B parameters [106].

The upshot of these results is that the most promising approaches for learning from explanation
data are likely those treating explanations as inputs (in a manner that does not require new
explanations at test time). However, we recommend that other graphical models not be ruled
out completely, in case there are promising methods in those families that have yet to be
explored.

6.3 Synthetic Task

Following recent work using synthetic data to investigate sequence modeling questions [121,
125], we design a synthetic dataset so that we can carefully control several important data
properties. In Fig. 6.3, we show an example data point and description of how it gets its label.
The premise of our task is to classify sequences by counting different integers in them.

Core Idea Behind Data. We wish to design a task where, for a data point (x, y), an
explanation e communicates information about why input x receives label y. The premise
of the task is that a binary label for a sequence of integers x is determined by whether
there are more of an integer a in the sequence than there are of an integer b. We refer
to integers (a, b) that need to be counted as the label reason. This label reason forms the
basis of the explanation for each data point, and it is always exactly specified by the first
two integers in x, which we term the index and indicator. For every data point x, there
is an explanation e = (index,m, n, r, d) where the label reason is given by either (m,n) or

34

Analogous Components to Real Data

Index
An easily computable feature connecting
the input to its explanation

Indicator
A feature indicating what information from
the explanation is relevant for the input's label

An explanation that says why the input
received its label, when understood properly

Synthetic Task

Description: The sequence has label because there are more s than s.
The index maps to , and indicator says to count
rather than . If there were more s than s, the label would be .
There is a one-to-one map between index values and tuples.

Count whether there are more of integer a than integer b

Figure 6.3: An example of our synthetic task.

(r, d). Whether the label reason is the (m,n) integer pair or the (r, d) pair is dictated by the
indicator. As represented in Fig. 6.3, (a, b) = (m,n) if the indicator is 1 and (a, b) = (r, d)
if the indicator is 2. We call the data e an explanation because it is a direct encoding of a
natural language explanation for the data (x, y). For the data point in Fig. 6.3, this natural
language explanation is “input x receives label 1 because it contains more 80’s than 40’s, and
we do not need to count 17’s or 27’s for this sequence.”

Proposed Dataset. We describe the proposed dataset using some default data parameters
for preliminary experiments, but any specific numbers appearing below are easily adjusted.
See Supplement C.4 for the full generative process.
1. Train set: 5000 sequences of 20 integers (including index and indicator), each accompanied

by an explanation. There are 500 unique values of index in the dataset drawn from
unif(1, 10000), so there are 10 points for each index, whose values of m,n, r, and d are
drawn from unif(1, 100) while requiring that m̸=n ̸=r ̸=d. The corresponding 10 values of
indicator are split between 1 and 2. Half of the points have label y=1, i.e. either #m>#n
or #r>#d, depending on which feature is causal. In each xi, after m,n, r, and d have been
randomly placed into the sequence, unfilled slots are filled with samples from unif(1, 100).

2. Dev set: 10,000 points, none appearing in Train, with the same 500 index values, and twice
the number of points per index as Train.

3. Test set: 50,000 points of similar construction to the Dev set, but with five times the points
per index as Train.

Analogous Properties to Human-Curated Data. We claim that aspects of our synthetic
task are analogous to properties that natural language data might take on, which we represent
in Fig. 6.3. First, e is an explanation in the sense that, when understood properly, it is a
plausible answer to the question: “why does point x have label y?” The explanation describes
the feature that causes the label, i.e. the integers that should be counted. We suggest that the
index in a sequence is analogous to the topic of some text or the things it refers to: it is an
easily computable feature that connects the input to the appropriate explanation. Meanwhile,
the indicator is a feature that tells how information from an explanation is relevant to deciding
the label. Similarly, an explanation might only be understood in the context of the input it

35

[PLACEHOLDER RUNNING TITLE – SOME TITLES WILL BE TOO LONG TO FIT – PH]

50

60

70

80

90

100

Baseline H-Mᴇᴀɴ TᴇxᴛCᴀᴛ

Acc.

Retrieval Model
No Retrieval
No Retrieval
(10x Train)
Fixed
Learned
Optimal

Is Explanation Retrieval Helpful?

Figure 6. (RQ2) Synthetic task accuracy by the conditioning mech-
anism and retrieval model status, for data with num-tasks = 500.[
new 10x train baseline – PH]

of tasks increases (equivalent to the number of points per
task decreasing), reaching accuracies as low as 62.2% at
num-tasks= 500. Meanwhile, we observe that providing
the index does slightly ease the task inference, but the mod-
els can by no means memorize the map from index to the
task information. Regarding model capacity, we find that
using RoBERTa-large increases model accuracy when the
number of num-tasks is relatively low (less than 250), but
after this point RoBERTa-base performs better (see Fig. 13
in Appendix B). Lastly, we see that increasing the training
set size can greatly improve model performance even with
num-tasks= 500, reaching 87.11% with 50,000 training
points (trend shown in Fig. 14 in Appendix B). However,
we will see in the next section that, in terms of improving
model accuracy, even this 10x increase in training size is
less effective than using retrieved explanations with 5000
training points. [added transition off sample size point – PH
]

[roberta-large results in appendix. better at low-task regime,
worse in high-task regime – PH]

6.2. RQ2: Can retrieval of past explanations enable a
model to solve our task?

Design. Using the full-info explanations and data with
num-tasks= 500, we measure model accuracy with retrieval
in a 3⇥2 design. There are three conditions for the retrieval
model: (1) fixed, where the Sentence-RoBERTa retriever is
fixed and only the classifier is trained, (2) learned, where
both classifier and retriever are trained end-to-end, and (3)
optimal where the optimal retrieval model is used and the
classifier is trained. Note that we know the optimal retrieval
model assigns the highest probabilities to explanations with
indexe matching the query point’s indexx, so by using a re-
triever p(ei|xi) = exp ([indexe = indexx]) and a context
size lower than ntask, we can ensure the retrieved explana-
tions are always relevant. There are two conditions for the
conditioning mechanism used: (1) TEXTCAT with C=k=6,

Figure 7. (RQ3) Synthetic task accuracy with evidential and re-
composable explanations, grouped by the conditioning mechanism
and status of retrieval model. [shud we be mentioning the error
bars once somewhere in caption/main text?[added model se-
lection and hypothesis testing section in Experimental Setup –
PH] – MB]

and (2) H-MEAN with C=4 and k=4, which approximately
matches the computational cost of the TEXTCAT condition.

Results. Shown in Fig. 6, the results show that retrieval
with Sentence-BERT improves model accuracy by around
29 percentage points over a no-retrieval baseline. Each con-
ditioning mechanism sees roughly the same improvement.
Additionally, we can learn a retrieval model that does nearly
as well as the optimal retrieval model, improving over the
fixed condition by another 7 points. [should we add some
more reasons + conclusions/takeaways of these numerical re-
sults? [added a couple takeaway sentences – PH] – MB]
Thus, retrieval of explanations allows the model to per-
form much better than a no-retrieval baseline. We see a
large improvement in performance from retrieval even when
the baseline could learn to infer the task information directly
from the index value in each input. In fact, explanation re-
trieval outperforms a no-retrieval baseline with as many as
50,000 training data points (a 10x increase), which obtains
87.11% accuracy.

6.3. RQ3: Can models aggregate information across
explanations for better prediction?

Design. We run the same experiment design as for
RQ2, using evidential and recomposable explanations (see
Sec. 3.3). With evidential explanations, we shift each inte-
ger in the explanation (excluding the index) independently
by zero-mean, discrete noise ✏ ⇠ unif(�2, 2). We use the
2-piece condition for recomposable explanations, meaning
two explanations combine to give the full task information.
As in RQ1, we show results here for values of C=k=6 for
TEXTCAT and C=k=4 for H-MEAN.

Results. We display the results in Fig. 7. First, we observe
that for evidential explanations, learned retrieval is close

Figure 6.4: Synthetic task accuracy for our baseline and retrieval model with two conditioning
mechanisms, H-Mean and TextCat.

explains.

6.4 Initial Experiments

We include experiments below that (1) show explanation data is helpful for solving our task
and (2) demonstrate why the task is hard without explanation data. We make use of a
retrieval-based model similar to Zhou et al. [238], which learns to retrieve explanations from
the training dataset to help with prediction at test time (details in Appendix C.2 and C.3).
This model is composed of a RoBERTa-base classifier [123] and a SentenceRoBERTa model
used for retrieval [164]. The baseline in our experiments is the RoBERTa classifer on its own.

6.4.1 Explanation Retrieval Enables a Model to Solve Our Task

Design. Using our default dataset containing one explanation per training point, we measure
model accuracy with retrieval in a 3× 2 design. There are three conditions for the retrieval
model: (1) fixed, where the Sentence-RoBERTa retriever is fixed and only the classifier is
trained, (2) learned, where both classifier and retriever are trained end-to-end, and (3) optimal
where the optimal retrieval model is used and the classifier is trained. We know the optimal
retrieval model retrieves explanations with an index matching the query point’s index. The two
conditioning mechanisms, H-Mean and TextCat, differ in how they combine information
across multiple retrieved explanations to produce a final prediction (see Appendix C.2.1).

Results. The results in Fig. 6.4 show that explanation retrieval can reach accuracies above
98%, improving accuracy by around 37 points over a no-explanation baseline. We also find
that the learned retrieval model does as well as the optimal retrieval model, improving over
the fixed condition by about 7 points. Thus, access to explanations allows the model to
perform much better than a no-explanation baseline. In fact, the explanation retrieval model
outperforms a no-explanation baseline with as many as 50,000 training data points (a 10x
increase), which obtains 87.11% accuracy.

36

50

60

70

80

90

100

0 100 200 300 400 500
Unique Explanations

Acc.

Model Input

With Explanation
No Explanation
No Index

When Can the Label Reason Be Inferred?

Figure 6.5: Synthetic task accuracy as a function of the number of unique explanations for
data point labels.

6.4.2 Why Is The Task Hard Without Explanations?

Design. We measure test accuracy as a function of how many unique explanations (and
therefore label reasons) there are in the data. While keeping the train set size fixed at 5000
points, we vary how many points share the same explanation (index,m, n, r, d). By default
there are 10 points per index, and with 5000 points this means that there are 500 unique
explanations in the data. We use many as 2500 points per index, meaning using two unique
explanations. The experiment conditions also vary in how task information is available in the
input: (1) for With Explanation, each 20-integer sequence xi has its explanation appended
to it; (2) for No Explanation, only xi is given, which requires the model to learn the map
index→ (m,n, r, d); (3) for No Index, the index is omitted from the input, so the model must
infer the label reason from the sequence’s contents alone.

Results. The results are shown in Fig. 6.5. We see that, when the number of unique
explanations (and therefore possible label reasons) is small, the No Explanation model can
achieve an accuracy as high as if it had been directly given the label reason, i.e. as high as the
With Explanation condition. Yet, No Explanation model accuracy falls off quickly with the
number of unique explanations, reaching accuracies as low as 62.2% with 500 explanations.
Evidently, with this many unique explanations, it is too difficult to learn the map between
the index and the latent label reason. Without the index in the input (No Index condition),
it is even harder to infer the label reason. While accuracy does rise significantly with the size
of the training data (see Fig. 6.4), even using 10x as much train data does not close the gap
with the explanation retrieval model.

6.5 Discussion & Conclusion

We present a synthetic dataset with key similarities to natural language explanation data, and
we show that our explanations are highly useful for model learning. However, we emphasize
that if a model already “knew” the information in some explanations, it might not need
them. This may plausibly occur with sufficiently large pretrained models that store a great
deal of factual knowledge [151]. Similarly, the necessary information might be learnable from

37

(X,Y) data alone. Future work on modeling approaches we outline in this chapter (Fig. 6.2)
will benefit from testing their methods on controlled synthetic tasks as a test of their ability
to learn from explanation data. Then, further analysis will be helpful for understanding
how explanations contain novel information that is not learned elsewhere in pretraining or
finetuning.

38

7 Feature Attribution Methods and Evaluation

In this chapter, I introduce new methods for and address conceptual problems with feature
attribution, a popular approach to model explanation that appears prominently in our initial
work on evaluating ML explanations (Chapter 4).

7.1 Introduction

Estimating feature importance (FI) is a common approach to explaining how learned models
make predictions for individual data points [185, 165, 115, 198, 126, 37]. FI methods assign
a scalar to each feature of an input representing its “importance” to the model’s output,
where a feature may be an individual component of an input (such as a pixel or a word) or
some combination of components. Alongside these methods, many approaches have been
proposed for evaluating FI estimates (also known as attributions) [141, 5, 42, 80, 65, 239].
Many of these approaches use test-time input ablations, where features marked as important
are removed from the input, with the expectation that the model’s confidence in its original
prediction will decline if the selected features were truly important.

For instance, according to the Sufficiency metric [42], the best FI explanation is the set of
features which, if kept, would result in the highest model confidence in its original prediction.
Typically the top-k features would be selected according to their FI estimates, for some
specified sparsity level k. Hence, the final explanation e is a k-sparse binary vector in {0, 1}d,
where d is the dimensionality of the chosen feature space. For an explanation e and a model
f that outputs a distribution over classes p(y|x) = f(x), Sufficiency can be given as:

Suff(f, x, e) = f(x)ŷ − f(Replace(x, e))ŷ

where ŷ = argmaxy f(x)y is the predicted class for x and the Replace function replaces features
in x with some uninformative feature at locations corresponding to 0s in the explanation e.

The Replace function plays a key role in the definition of such metrics because it defines the
counterfactual input that we are comparing the original input with. Though FI explanations are
often presented without mention of counterfactuals, all explanations make use of counterfactual
situations [131], and FI explanations are no exception. The only way we can understand
what makes some features “important” to a particular model prediction is by reference
to a counterfactual input which has its important features replaced with a user-specified
(uninformative) feature.

In this chapter, we study several under-explored dimensions of the problem of finding
good explanations according to test-time ablation metrics including Sufficiency and a related
metric, Comprehensiveness, with a focus on natural language processing tasks. We describe
three primary contributions below.

First, we argue that standard FI explanations are heavily influenced by the out-of-
distribution (OOD) nature of counterfactual model inputs, which results in socially misaligned
explanations. We use this term, first introduced by Jacovi and Goldberg [85], to describe a
situation where an explanation communicates a different kind of information than the kind
that people expect it to communicate. Here, we do not expect the model prior or random
weight initialization to influence FI estimates. This is a problem insofar as FI explanations are
not telling us what we think they are telling us. We propose a training algorithm to resolve

39

the social misalignment, which is to expose models to counterfactual inputs during training,
so that counterfactuals are not out-of-distribution at test time.

Second, we systematically compare Replace functions, since this function plays an impor-
tant role in evaluating explanations. To do so, we remove tokens from inputs using several
Replace functions, then measure how OOD these ablated inputs are to the model. We
compare methods that remove tokens entirely from sequences of text [141, 42], replace token
embeddings with the zero embedding or a special token [115, 198, 5, 228, 198], marginalize
predictions over possible counterfactuals [241, 101, 224], and edit the input attention mask
rather than the input text. Following our argument regarding the OOD problem (Sec. 7.4),
we recommend the use of some Replace functions over others.

Third, we provide several novel search-based methods for identifying FI explanations.
While finding the optimal solution to argmaxe Suff(f, x, e) is a natural example of binary
optimization, a problem for which search algorithms are a common solution [152, 180, 11],
we are aware of only a few prior works that search for good explanations [54, 167, 47]. We
introduce our novel search algorithms for finding good explanations by making use of general
search principles [152]. Based on experiments with two Transformer models and six text
classification datasets (including FEVER, SNLI, and others), we summarize our core findings
as follows:

1. We propose to train models on explanation counterfactuals and find that this leads to
greater model robustness against counterfactuals and yields drastic differences in explanation
metrics.

2. We find that some Replace functions are better than others at reducing counterfactual
OOD-ness, although ultimately our solution to the OOD problem is much more effective.

3. We introduce four novel search-based methods for identifying explanations. Out of all
the methods we consider (including popular existing methods), the only one that consistently
outperforms random search is the Parallel Local Search (PLS) that we introduce, often by
large margins of up to 20.8 points. Importantly, we control for the compute budget used by
each method.

7.2 Related Work

Feature Importance Methods. A great number of methods have been introduced for
FI estimation, drawing upon local approximation models [165, 167, 103], attention weights
[87, 216, 235], model gradients [185, 184, 198, 189], and model-based feature selection [13,
9, 219, 145, 28, 37]. While search approaches are regularly used to solve combinatorial
optimization problems in machine learning [180, 16, 11, 49, 136], we know of only a few FI
methods based on search [54, 167, 47]. Fong and Vedaldi [54] perform gradient descent in
explanation space, while Ribeiro et al. [167] search for probably-sufficient subsets of the input
(under a perturbation distribution). In concurrent work, Du and Xu [47] propose a genetic
search algorithm for identifying FI explanations. We introduce several novel search algorithms
for finding good explanations, including (1) a gradient search similar to Fong and Vedaldi
[54], a (2) local heuristic search inspired by an adversarial attack method [49], (3) a global
heuristic search, and (4) a parallel local search (PLS) making use of general search principles
[152].

Choice of Replace Function. Past evaluations of explanation methods typically remove
tokens or words from the text entirely [141, 42] or replace them with fixed feature values
[80, 225]. Methods for creating explanations also use several distinct approaches, including

40

(1) replacing token embeddings with the zero vector [115, 198, 5], (2) using a special token
[228, 198], (3) marginalizing predictions over a random variable representing an unobserved
token [241, 101, 224, 90], and (4) adversarially selecting counterfactual features [81]. Sturmfels
et al. [196] carry out a case study involving a few Replace functions for a vision model, which
they compare via test-time ablations with image blurring techniques, though the case study
is not intended to be a full comparison of methods. Haug et al. [74] assess a number of
Replace functions for explanation methods used with tabular data, but they compare between
functions to use when generating explanations, rather than when evaluating explanations, for
which they offer no recommendation. In addition to evaluating Replace functions from the
above works, we also consider setting attention mask values for individual tokens to 0.

The Out-of-distribution Problem of Explanations. Many papers have expressed
concerns over how removing features from an input may result in counterfactuals that are out-of-
distribution to a trained model [228, 198, 54, 26, 80, 101, 81, 224, 197, 90, 158, 74, 179, 91, 205].
In response to the problem, some have proposed to marginalize model predictions over possible
counterfactual inputs [241, 101, 224, 90], use counterfactuals close to real inputs [26, 179],
weight their importance by their closeness to real inputs [158], or to adversarially select
counterfactual features rather than use any user-specified features [81]. Others reject the
whole notion of test-time ablations, preferring metrics based on train-time ablations [80].
Jethani et al. [91] propose a specialized model for evaluating explanations that is trained
on counterfactual inputs in order to make them in-distribution, but since the evaluation
model is distinct from the model used to solve the task, explanation metrics calculated
using this evaluation model may not reflect the faithfulness of explanations to the task
model. In concurrent work, Vafa et al. [205] independently adopt a solution equivalent to our
Counterfactual Training with an Attention Mask Replace function, an approach which we
empirically justify in Sec. 7.5. In general, prior works make arguments for their approach
based on intuition or basic machine learning principles, such as avoiding distribution shift. In
Sec. 7.4, we give a more detailed argument for preferring in-distribution counterfactuals on the
basis of social alignment, a concept introduced by Jacovi and Goldberg [85], and we propose a
solution to the OOD problem. Our solution allows for test-time evaluation of explanations of
a particular model’s decisions for individual data points, unlike similar proposals which either
evaluate large sets of explanations all at once [80] or use a separate model trained specifically
for evaluation rather than the blackbox model [91].

7.3 Problem Statement

Feature Importance Metrics. The problem we are investigating is to find good feature
importance explanations for single data points, where explanation are evaluated under metrics
using test-time ablations of the input. In this context, an explanation for an input in a
d dimensional feature space is a binary vector e ∈ {0, 1}d, which may be derived from
discretizing an FI estimate v ∈ Rd. We consider two primary metrics, Sufficiency and
Comprehensiveness [42]. Sufficiency measures whether explanations identify a subset of
features which, when kept, lead the model to remain confident in its original prediction for a
data point. Comprehensiveness, meanwhile, measures whether an explanation identifies all
of the features that contribute to a model’s confidence in its prediction, such that removing
these features from the input lowers the model’s confidence.

The Sufficiency metric for an explanation e ∈ {0, 1}d and model p(y|x) = fθ(x) is given as

Suff(fθ, x, e, s) = fθ(x)ŷ − fθ(Replaces(x, e))ŷ (7.1)

41

where ŷ = argmaxy f(x)y is the predicted class for x, and the Replaces function retains a
proportion s of the input features (indicated by e) while replacing the remaining features
with some user-specified feature. In order to control for the explanation sparsity, i.e. the
proportion s of tokens in the input that may be retained, we average Sufficiency scores across
sparsity levels in {.05, .10, .20, .50}, meaning between 5% and 50% of tokens in the input are
retained [42]. A lower Sufficiency value is better, as it indicates that more of the model’s
confidence is explained by just the retained features (increasing fθ(Replace(x, e))ŷ).

Similarly, Comprehensiveness is given as Comp(fθ, x, e, s) = fθ(x)ŷ − fθ(Replaces(x, e))ŷ
but with sparsity values in {.95, .90, .80, .50}, as we are looking to remove features that are
important to the prediction (while keeping most features). A higher Comprehensiveness value
is better, as it indicates that the explanation selects more of the evidence that contributes to
the model’s confidence in its prediction (resulting in a lower fθ(Replace(x, e))ŷ).

Overall Objective. Finally, our overall Sufficiency and Comprehensiveness objectives
are given by averaging Suff (or Comp) scores across several sparsity levels. With a model
p(y|x) = f(x), a single data point x with d features, and a set of sparsity levels S, the

Sufficiency objective is optimized by obtaining a set E = {ei}|S|i=1 with one explanation per
sparsity level as

argmax
E

1

|S|

|S|∑
i=1

Suff(f, x, ei, si) s.t. ei ∈ {0, 1}d and
∑
d

e
(d)
i ≤ ceiling(si · d)

where the ceiling function rounds up the number si · d of tokens to keep. When optimizing for
Comprehensiveness, we use the Comp and argmin functions, and the inequality is flipped. In
general, we will optimize this objective using a limited compute budget, further described in
Sec. 7.6.2.

7.4 The Out-of-Distribution Problem in Explanations

In this section, we first give a full argument for why it is problematic for explanations to be
created or evaluated using OOD counterfactuals. Then, we propose a solution to the OOD
problem. We rely on this argument in our comparison of Replace functions in Sec. 7.5. We
also assess our proposed solution to the OOD problem in Sec. 7.5 and later make use of this
solution in Sec. 7.6.

The OOD problem for explanations occurs when a counterfactual input used to create
or evaluate an explanation is out-of-distribution (OOD) to a model. Here, we take OOD to
mean the input is not drawn from the data distribution used in training (or for finetuning,
when a model is finetuned) [135]. In general, counterfactual data points used to produce
FI explanations will be OOD because they contain feature values not seen in training, like
a MASK token for a language model. A long line of past work raises concerns with this
fact [228, 198, 54, 26, 80, 101, 81, 224, 197, 90, 158, 74, 179, 91, 205]. The most concrete
argument on the topic originates from Hooker et al. [80], who observe that using OOD
counterfactuals makes it difficult to determine whether model performance degradation is
caused by “distribution shift” or by the removal of information. It is true that, for a given
counterfactual, a model might have produced a different prediction if that counterfactual was
in-distribution rather than out-of-distribution. But this is a question we cannot ask about
a single, trained model, where there is no ambiguity about what causes a drop in model
confidence when replacing features: the features in the input were replaced, and this changes

42

that model’s prediction. If the counterfactual was in-distribution, we would be talking about
a different model, with a different training distribution. Hence, we believe we need a stronger
argument for why we should not use OOD counterfactuals when explaining a trained model’s
behavior.

Our principal claim is that feature importance explanations for a standardly trained
neural model are socially misaligned, which is undesirable. Jacovi and Goldberg [85] originally
introduce this term as they describe shortcomings of explanations from a pipeline (select-
predict) model, which is a kind of classifier designed to be interpretable. Explanations are
socially misaligned when people expect them to communicate one kind of information, and
instead they communicate a different kind of information. For example, if we expected an
explanation to be the information that a model relied on in order to reach a decision, but
the explanation was actually information selected after a decision was already made, then we
would say that the explanations are socially misaligned. Our argument now proceeds in two
steps: first, we outline what the social expectations are for feature importance explanations,
and then we argue that the social expectations are violated due to the fact that counterfactuals
are OOD.

Explanation

Model
Class

Model
Prior

Random
Seed

Training
Algorithm Data

Input

Figure 7.1: Causal diagram of a feature im-
portance explanation for a trained model and
an input.

We suggest that, for a particular trained
model and a particular data point, people ex-
pect a feature importance explanation
to reflect how the model has learned
to interpret features as evidence for or
against a particular decision.1 This social
expectation is upheld if FI explanations are
influenced only by the interaction of an un-
trained model with a training algorithm and
data. But our expectations are violated to
the extent that FI explanations are influenced
by factors such as the choice of model prior
and random seed (which we do not intend to influence FI explanations). We depict these
possible upstream causes of individual FI explanations in Fig. 7.1. In fact, the model prior
and random seed are influential to FI explanations when the counterfactuals employed in
these explanations are OOD to the model. A simple example clearly illustrates the potential
influence of model priors: Suppose one trained a BERT model to classify the sentiment
of individual words using training data from a sentiment dictionary, then obtained feature
importance explanations with the MASK token Replace function. In this situation, model
predictions on counterfactual data are always equal to the prediction for a single MASK token,
fθ(MASK). So, by construction, the MASK token never appears in the training data, but FI
explanations for this model make use of the quantity fθ(MASK). Since a model could not
have learned its prediction fθ(MASK) from the data, this quantity will be largely determined
by the model prior and other training hyperparameters, and therefore explanations based
on this prediction are socially misaligned. Now, in general, we know that neural models
are sensitive to random parameter initialization, data ordering (determined by the random
seed) [44], and hyperparameters (including regularization coefficients) [30, 156, 206], even as
evaluated on in-distribution data. For OOD data, then, a neural model will still be influenced
by these factors, but the model has no data to learn from in this domain. As a result, FI

1We mean “people” to refer to the typical person who has heard the standard description of these explanations,
i.e. that they identify features that are “important” to a model decision. Of course, there will be some diversity
in how different populations interpret feature importance explanations [51].

43

explanations are socially misaligned to the extent that these unexpected factors influence the
explanations (while the expected factors like data are not as influential). In other words, we
do not expect explanations to influenced by random factors, the priors of the model designer,
or uninterpretable hyperparameters, but we do expect them to be influenced by what the
model learns from data.

The argument applies equally to explanation metrics. When metrics are computed using
OOD counterfactuals, the scores are influenced by unexpected factors like the model prior
and random seed, rather than the removal of features that a model has learned to rely on. As
a result, the metrics are socially misaligned. They do not represent explanation quality in the
way we expect them to.

The solution to the OOD problem is to align the train and test distributions, which
we do by exposing the model to counterfactual inputs during training, a method
we term Counterfactual Training. Since common explanation methods can require hundreds
or thousands of model forward passes when explaining predictions [165, 198], explanations
from these methods would be prohibitively expensive to obtain during training. We therefore
propose to train with random explanations that remove most of the input tokens, which
provides a good objective in theory for models to learn the counterfactual distribution that
will be seen at test time [91]. Specifically, we double the inputs in each training batch, adding
a Replace(x, e) version of each input (with the same label) according to a random explanation
e with sparsity randomly selected from {.05, .1, .2, .5}. The resulting Counterfactual-Trained
(CT) models make in-distribution predictions for both observed and counterfactual data
points. While we cannot guarantee that this approach fully eliminates the influence of the
model prior and random seed on FI explanations, the fact that explanations are influenced
by what the model learns from data will resolve social misalignment to a great extent. We
find that these models suffer only slight drops in test set accuracy, by 0.7 points on average
across six datasets (see Table D.2 in Supplement). But we observe that this approach greatly
improves model robustness to counterfactual inputs, meaning the counterfactuals are now
much more in-distribution to models (described further in Sec. 7.5). Similar to the goals of
ROAR [80] and EVAL-X [91], our proposed solution also aims to align the train and test-time
distributions. However, our approach allows for test-time evaluation of individual explanations
for a particular trained model, while ROAR only processes large sets of explanations all at
once and EVAL-X introduces a specialized model for evaluation, which may not reflect the
faithfulness of explanations to the task model.

7.5 Analysis of Counterfactual Input OOD-ness

Here, we assess how out-of-distribution the counterfactual inputs given by Replace functions
are to models, and we measure the effectiveness of Counterfactual Training. We do this before
designing or evaluating explanation methods because, given our argument in Sec. 7.4, it is
important to first identify which Replace function and training methods are most appropriate
to use for these purposes.

Experiment Design. We compare between Replace functions according to how robust
models are to test-time input ablations using each function, where the set of input features to
be removed is fixed across the functions. We measure robustness by model accuracy, which
serves as a proxy for how in-distribution or out-of-distribution the ablated inputs are. If we
observe differences in model accuracies between Replace functions for a given level of feature
sparsity, we can attribute the change in the input OOD-ness to the Replace function itself. In

44

Figure 7.2: Model sensitivity to input ablations for several choices of Replace function and
training algorithm. On the left we show the sensitivity of standardly trained models. On the
right we show the effect of using Counterfactual-Trained models.

the same manner, we compare between Counterfactual-Trained (CT) models and standardly
trained models (termed as Standard).

Specifically, we train 10 BERT-Base [41] and RoBERTa-Base [123] on two benchmark text
classification datasets, SNLI [20] and SST-2 [191]. These are all Standard models, without the
counterfactual training we propose. We use ten random seeds for training these models. Then,
we evaluate how robust the models are to input ablations, where we remove a proportion of
random tokens using one of five Replace functions (i.e. we Replace according to a random
explanation). We evaluate across proportions in {0.2, 0.5, 0.8}. The five Replace functions
we test are:

1. Attention Mask. We introduce this Replace function, which sets a Transformer’s
attention mask values for removed tokens to 0, meaning their hidden representations are
never attended to.

2. Marginalize. This method marginalizes model predictions over counterfactuals drawn
from a generative model pϕ(x) of the data, i.e. as argmaxy ln

∑
x̃∼pϕ(x̃|x,e) pθ(y|x̃)pϕ(x̃|x, e),

where pϕ(x̃|x, e) is the distribution over tokens to be replaced given by e.g. BERT
[241, 101, 26, 224].

3. MASK Token. In this method, we simply replace tokens with the MASK token.

4. Slice Out. This approach removes selected tokens from the input sequence itself, such
that the resulting sequence has a lower number of tokens.

5. Zero Vector. Here, we set the token embeddings for removed tokens to the zero vector.

We train additional CT models for BERT-Base on SNLI, with ten random seeds per model,
for all Replace functions except Marginalize, since this function is exceedingly expensive to
use during Counterfactual Training. For further details, see the Supplement.

Results for Replace functions. We show the results of this experiment in Fig. 7.2,
via boxplots of the drops in accuracy for each of the 10 models per condition. First, we
describe differences in Replace functions for Standard models, then we discuss the effect
of Counterfactual Training. On the left in Fig. 7.2, we see that Standard models are much
more sensitive to some Replace functions than others. The Attention Mask and Mask Token
functions are the two best methods. The best of these two methods outperforms the third best

45

method by up to 1.61 points with BERT and SNLI (p = .0005),2 5.48 points with RoBERTa
and SNLI (p < 1e−4), 2.42 points with BERT and SST-2 (p = 0.0008), and 4.72 points
with RoBERTa and SST-2 (p < 1e−4). The other methods often far underperform the best
method. For instance, with BERT on SST-2, Zero Embedding is up to 10.45 points worse than
Mask Token (p < 1e−4), and with RoBERTa on SST-2, Slice Out underperforms Attention
Mask by up to 4.72 points (p < 1e−4). Marginalize is regularly more than 10 points worse
than the best method. Overall, we recommend that, when not using Counterfactual Training,
researchers use either the Attention Mask or Mask Token Replace functions.

Counterfactual Training vs. Standard Training. On the right side of Fig. 7.2, we
see the effect of Counterfactual Training on model robustness for several Replace functions.
We find that counterfactual inputs are much less OOD for Counterfactual-Trained models
than for Standard models, regardless of the Replace function used. The improvement in
robustness is up to 22.9 points. Moreover, the difference between Replace functions is almost
entirely erased, though we do observe a statistically significant difference between Attention
Mask and Zero Embedding with 80% of tokens removed (by 2.23 points, p < 1e−4). Given
these results, and following Sec. 7.4, we ultimately recommend that researchers use
Counterfactual Training with the Attention Mask, Mask Token, or Slice Out
Replace function whenever they intend to create FI explanations.

7.6 Explanation Methods and Experiments

7.6.1 Explanation Methods

We describe explanation methods we consider below, with implementation details in the
Supplement.

Salience Methods. One family of approaches we consider assigns a scalar salience to
each feature of an input. The key property of these scores is that they allow one to rank-order
features. We obtain binarized explanations through selecting the top-k features, or up to the
top-k features when some scores are negative (suggesting they should not be kept). We list
the methods below:3

1. LIME. LIME estimates FI by learning a linear model of a model’s predicted probabilities
with samples drawn from a local region around an input [165]. Though it is common to use
the Slice Out Replace function with LIME, we use the Attention Mask Replace function
(following Sec. 7.5), meaning we sample local attention masks rather than local input sequences.

2. Vanilla Gradients. We obtain model gradients w.r.t. the model input as salience scores,
one early method for explanation [113]. We compute the gradient of the predicted probability
w.r.t. input token embeddings, and we obtain a single value per token by summing along the
embedding dimension.

3. Integrated Gradients. We evaluate the Integrated Gradients (IG) method of Sundarara-
jan et al. [198]. This method numerically integrates the gradients of a model output w.r.t.
its input along a path between the observed input and a user-selected baseline. Given our
results in Sec. 7.5, we use a repeated MASK token embedding for our baseline x̃ rather than
the all-zero input suggested by Sundararajan et al. [198] for text models. We use the model’s

2p-values for two-sided difference in means tests are calculated by block bootstrap with all data points and
model seeds being resampled 100k times [50].

3In early experiments, we found that a parametric model (similar to [13, 9, 145]) performed far worse than
other salience methods, and hence we leave out parametric models from further consideration.

46

predicted probability as the output, and to obtain token-level salience scores, we sum the
output of IG along the embedding dimension.

Search Methods. An alternative class of methods searches through the space of possible
explanations. Search methods are regularly used to solve combinatorial optimization problems
in machine learning [180, 16, 11, 49, 136]. All search methods use the Attention Mask Replace

function, and the search space is restricted to explanations of the maximum allowable sparsity
(or minimum, with Comprehensiveness), except for Anchors which takes a maximum number
of features as a parameter.

1. Random Search. For each maximum explanation sparsity k (or minimum, for Com-
prehensiveness), we randomly sample a set of k-sparse explanations, compute the current
objective for each of them, and choose the best explanation under the objective.

2. Anchors. Ribeiro et al. [167] introduce a method for finding a feature subset that
almost always yields the same model prediction as its original prediction for some data point,
as measured among data points sampled from a distribution centered on the original data
point. Explanations are also preferred to have high coverage, meaning the feature subset is
likely to be contained in a local sample. The solution is identified via a Multi-Armed Bandit
method combined with a beam search.

3. Exhaustive Search. Exhaustive search returns the optimal solution after checking
the entire solution space. This is prohibitively expensive with large inputs, as there is a
combinatorial explosion in the number of possible explanations. However, we are able to
exactly identify optimal explanations for short sequences, typically with 10 or fewer tokens.

4. Gradient Search. Fong and Vedaldi [54] propose to search through a continuous
explanation space by gradient descent. We introduce a Gradient Search that uses discrete
explanations, because continuous explanations do not reflect test-time conditions where
discrete explanations must be used. For an input of length L, this method sequentially
updates a continuous state vector s ∈ RL via gradient descent to minimize a regularized
cross-entropy loss between the model prediction on the input x and the model prediction
for Replace(x, et), where et is a discrete explanation sampled from a distribution p(et|st)
using the Gumbel-Softmax estimator for differentiability [127, 89]. The regularizer maintains
sparsity of the solution. The final explanation is obtained from the last state st.

5. Taylor Search. Inspired by HotFlip [49], this method explores the solution space by
forecasting the change in the objective using a first-order Taylor approximation. Specifically,
this is a local search method with a heuristic function computed as follows: We first calculate
the gradient g ∈ RL of the cross-entropy loss (same loss as Gradient Search) with respect to
the explanation et. Then we find the two indices i and j as the solution to argmaxi,j g(i)−g(j).
The next state is obtained by setting e

(i)
t = 1 and e

(j)
t = 0. This is a first-order approximation

to the change in loss between the new and old state, based on the Taylor expansion of the loss
[49]. Note when optimizing for Comprehensiveness, we use the argmin. Following Ebrahimi
et al. [49], we ultimately use this search heuristic within a beam search, starting from a
random explanation, with width w = 3.

6. Ordered Search. Next, we introduce a global search algorithm, Ordered Search. This
method searches through all explanations in an order given by a scoring function f : e→ R.
We only require that f is linear in e, as this allows for efficient ordering of the search space
using a priority queue [11]. The algorithm proceeds by first estimating parameters for fθ,
then searching through explanations in order of their score, θT e. For the first stage, we obtain
parameters for fθ from the per-token salience scores given by LIME, which is the best salience
method evaluated in Sec. 7.6. In the second stage, we enumerate the search space in order of

47

the score given by fθ. We allocate 25% of the compute budget to the first stage and 75% to
the second (measured in terms of forward passes).

7. Parallel Local Search (PLS). Lastly, we again consider the class of local search algorithms,
which have a long history of success with constrained optimization problems [152, 11]. We
propose a parallelized local search algorithm (PLS) tailored to the problem at hand. Given a
number r of parallel runs to perform, a proposal function Propose, and compute budget b
per run, an individual search proceeds as follows: (1) Sample a random initial explanation
e1 and compute the objective function for that explanation. (2) For the remaining budget
of b−1 steps: sample a not-already-seen explanation et according to Propose and adopt et
as the new state only if the objective is lower at et than at the current state. The Propose

function samples not-already-seen explanations from neighboring states to the current state.
We use r = 10 parallel runs following tuning results.

7.6.2 Experimental Setup

Data. We compare the above explanation methods on six benchmark text classification
datasets: SNLI [20], BoolQ [31], Evidence Inference [110], FEVER [203], MultiRC [97], and
SST-2 [190]. One important distinction among these datasets is that BoolQ, FEVER, MultiRC,
and Evidence Inference data points include both a query and an accompanying document. The
query is typically critical information indicating how the model should process the document,
and therefore we never replace query tokens. We use 500 test points from each dataset to
compare methods. See Table D.1 in the Supplement for dataset statistics, including average
sequence length.

Models. We train ten seeds of BERT-Base models on each dataset [41], which we term
Standard models. For each dataset we train another ten Counterfactual-Trained (CT) models
using the Attention Mask Replace function, following the approach outlined in Sec. 7.4
(further details in Supplement).

Controlling for Compute Budget. We wish to control for the available compute
budget in order to fairly compare explanation methods. Some explanations require a single
forward and backward pass [185, 113], while others can require hundreds of forward and
backward passes [198] or thousands of forward passes [165]. Since this is expensive to perform,
we limit each method to a fixed number of forward and backward passes (counted together),
typically 1000 in total, to obtain a single explanation.

7.6.3 Main Results

In Table 7.1, we show Suff and Comp scores across methods and datasets, for both the
Standard and Counterfactual-Trained (CT) models. 95% confidence intervals are shown in
parentheses, obtained by bootstrap with data and model seeds resampled 100k times. Bolded
numbers are the best in their group at a statistical significance threshold of p < .05. We
give results for SST-2 in the Supplement, including for Exhaustive Search since we use short
sequences there, as well as for Vanilla Gradient as it performs much worse than other methods.
We summarize our key observations as follows:

1. PLS performs the best out of all of the explanation methods, and it is
the only method to consistently outperform Random Search. Improvements in
Sufficiency are statistically significant for every dataset using both Standard and CT models,
with differences of up to 12.9 points over LIME and 7.6 points over Random Search. For
Comprehensiveness, PLS is the best method in 9 of 10 comparisons, 7 of which are statistically

48

Table 7.1: Explanation metrics across methods and datasets

Sufficiency ↓ Comprehensiveness ↑
Dataset Method Standard Model CT Model Standard Model CT Model

SNLI

LIME 20.00 (2.02) 27.08 (1.68) 82.18 (2.82) 75.34 (1.93)
Int-Grad 43.76 (3.27) 32.91 (2.36) 34.01 (2.55) 43.22 (2.28)
Anchors 11.93 (1.53) 30.96 (1.87) 55.72 (2.60) 48.86 (2.38)
Gradient Search 17.55 (1.47) 33.98 (1.43) 53.15 (2.53) 49.36 (1.95)
Taylor Search 6.91 (1.10) 28.00 (1.46) 73.20 (2.57) 66.76 (2.12)
Ordered Search -1.45 (0.93) 15.06 (1.37) 87.78 (2.41) 84.67 (1.61)
Random Search -1.54 (0.96) 15.38 (1.39) 87.36 (2.47) 84.63 (1.68)
PLS -1.65 (1.07) 14.16 (1.38) 87.95 (2.55) 86.18 (1.45)

BoolQ

LIME 2.15 (1.75) -1.56 (0.63) 52.02 (3.69) 36.25 (3.45)
Int-Grad 20.78 (3.57) 9.05 (1.53) 16.80 (1.57) 12.20 (1.68)
Anchors 11.98 (2.62) 6.07 (1.06) 29.87 (4.17) 15.46 (1.97)
Gradient Search 5.12 (1.41) 1.65 (0.81) 30.04 (2.58) 17.65 (1.85)
Taylor Search 6.01 (1.33) 2.28 (0.87) 46.32 (3.89) 26.65 (2.68)
Ordered Search 0.09 (0.84) -2.58 (0.70) 51.59 (3.52) 34.36 (3.34)
Random Search -0.58 (0.63) -2.51 (0.70) 55.78 (3.71) 31.62 (3.06)
PLS -1.17 (0.47) -3.52 (0.88) 72.78 (4.06) 47.80 (3.57)

Evidence
Inference

LIME -16.07 (2.84) -14.92 (1.38) 47.60 (5.66) 33.97 (4.22)
Int-Grad 1.22 (4.42) -2.98 (1.68) 26.51 (2.68) 20.87 (2.57)
Anchors 7.08 (4.70) 3.04 (0.99) 25.01 (6.52) 13.89 (1.55)
Gradient Search -10.57 (2.58) -7.56 (1.46) 31.73 (4.43) 18.07 (2.13)
Taylor Search -4.55 (2.66) -3.33 (1.27) 41.95 (5.63) 26.70 (3.00)
Ordered Search -16.80 (2.75) -14.26 (1.36) 45.37 (5.53) 31.14 (3.73)
Random Search -17.05 (2.83) -12.69 (1.30) 42.81 (6.00) 26.48 (3.15)
PLS -20.76 (3.77) -20.33 (2.65) 56.31 (9.81) 38.71 (3.91)

FEVER

LIME -0.24 (0.50) 0.39 (0.96) 33.86 (3.43) 22.06 (2.36)
Int-Grad 9.72 (1.80) 4.99 (1.40) 17.81 (2.47) 13.69 (1.71)
Anchors 6.19 (1.22) 6.36 (1.10) 20.82 (2.58) 11.94 (1.84)
Gradient Search 0.66 (0.68) 2.63 (1.12) 19.26 (2.68) 11.44 (1.65)
Taylor Search 4.17 (0.96) 4.20 (1.20) 24.51 (2.78) 15.62 (1.85)
Ordered Search -1.26 (0.41) -0.01 (0.90) 31.79 (3.28) 18.90 (2.46)
Random Search -1.51 (0.51) -1.24 (2.33) 32.47 (3.33) 18.84 (2.11)
PLS -2.04 (0.62) -3.66 (0.82) 37.72 (3.28) 24.07 (2.46)

MultiRC

LIME -5.20 (1.18) -5.90 (1.19) 39.75 (4.84) 28.57 (2.18)
Int-Grad 13.19 (3.14) 4.66 (1.71) 15.53 (3.39) 11.84 (1.31)
Anchors 5.40 (3.34) 3.33 (1.27) 24.53 (8.77) 14.55 (1.66)
Gradient Search -0.09 (1.33) -0.73 (1.18) 20.16 (2.92) 11.41 (1.13)
Taylor Search 7.54 (2.53) 1.43 (1.47) 30.76 (4.04) 20.15 (1.83)
Ordered Search -6.43 (0.98) -5.49 (1.13) 35.70 (4.40) 24.38 (2.03)
Random Search -7.42 (1.08) -5.97 (1.22) 35.29 (4.59) 22.19 (1.81)
PLS -10.17 (1.43) -9.77 (1.49) 39.95 (5.44) 26.96 (2.19)

significant, and improvements are as large as 20.8 points over LIME and 17 points over
Random Search.

2. LIME is the best salience method on both Suff and Comp metrics, but it
is still outperformed by Random Search on Sufficiency in 9 of 10 comparisons,

49

by up to 21.5 points. LIME does appear to perform better than Random Search on
Comprehensiveness with three of five datasets for Standard models and four of five with CT
models, where the largest improvement over Random Search is 7.49 points.

3. Suff and Comp scores are often much worse for CT models than for Standard
models. With Random Search, for instance, Comp scores are worse for all datasets (by up
to 24.16 points), and Suff scores are worse by 16.92 points for SNLI, though there are not
large changes in Suff for other datasets. The differences here show that the OOD nature
of counterfactual inputs can heavily influence metric scores, and they lend support to our
argument about the OOD problem in Sec. 7.4. In particular, these metrics are more easily
optimized when counterfactuals are OOD because it is easier to identify feature subsets that
send the model confidence to 1 or 0.

Given the results above, we recommend that explanations be obtained using PLS for
models trained with Counterfactual Training. Though explanation metrics are often worse
for CT models, the only reason for choosing between Standard and CT models is that CT
models’ explanations are socially aligned, while Standard models’ explanations are socially
misaligned. It would be a mistake to prefer standardly trained models on the grounds that
they are “more easily explained” when this difference is due to the way we unintentionally
influence model behavior for OOD data points. When using CT models, however, we should
be comfortable optimizing for Sufficiency and Comprehensiveness scores, and PLS produces
the best explanations under these metrics.

We give additional results for RoBERTa and reduced search budgets in the Supplement.

7.7 Conclusion

In this chapter, we provide a new argument for why it is problematic to use out-of-distribution
counterfactual inputs when creating and evaluating feature importance explanations. We
present our Counterfactual Training solution to this problem, and we recommend certain
Replace functions over others. Lastly, we introduce a Parallel Local Search method (PLS)
for finding explanations, which is the only method we evaluate that consistently outperforms
random search.

50

8 Model Editing and Belief Graphs for LMs

Now, we transition from work on interpretability to work on controllability, though, broadly
speaking, treating LMs with the intentional stance is still a mode of interpreting how LMs
work (behavior is determined by desires and beliefs). Here, I discuss what it would mean for
LMs to have “beliefs” and how to edit them.

8.1 Introduction

Language models (LMs) may not have beliefs in the same sense that people do, but there are
a few reasons to analyze LMs in terms of the beliefs they may possess. The first is that this
is a useful way to understand and speak about how LMs behave. When discussing whether
animals have beliefs (raccoons, in particular), philosopher Daniel Dennett [1995] writes:

You might as well call the state of the raccoon a belief, since if you call it a “registration”
or a “data-structure” in the “environmental information store” or some other technical
term, the logic you use to draw inferences about the animal’s behavior, given its internal
states, will be the standard, “intentionalistic” logic of belief.

Dennett bases this conclusion in the fact that we can and do draw accurate inferences about
animal behavior by first understanding their beliefs. We are drawn to speak about the beliefs
of LMs in the same “maximally bland (but maximally useful!)” sense. To the extent that
these neural networks act intelligently in response to stimuli, we may form more accurate
theories of how they work by understanding their beliefs.

The second reason for ascribing beliefs to language models is that many of the stricter
definitions of belief incidentally exclude many real beliefs held by real people. Following
Dennett [40], Newen and Starzak [140] define a belief as an informational state decoupled
from any motivational state, and they outline a few additional properties of beliefs, namely
that they should (1) be recombinable with motivational states and other informational states
and (2) have some minimal structural organization. Further, an entity with beliefs should (1)
be sensitive to new information, (2) categorize new beliefs as they develop, and (3) display
some kind of logical consistency. These are all properties that come in degrees, and setting
the bar too high will exclude many of the statements that people earnestly express to others
in their everyday lives. Meanwhile, animals and neural networks alike store information in
accordance with these properties to at least some extent.

We also note that we use the term belief rather than knowledge as in related work [240, 38]
because we want to analyze beliefs of language models rather than knowledge in them. LMs
may contain a great deal of knowledge to us, but in a traditional view of knowledge as Justified
True Belief, it is relatively more difficult to say that an LM knows something rather than that
it believes it [182].

In the remainder of this paper, we turn our attention to three practical endeavors:
detecting, updating, and visualizing beliefs in LMs. We build on work on editing models after
training, which is an exciting recent direction of research with many potentially valuable
use cases [187, 240, 38, 132]. For LMs, uses include correcting factually inaccurate outputs
and preventing otherwise unwanted outputs from models (e.g. toxic generated text) without
expensive data curation and retraining efforts. These are important applications given that

51

SLAG: Sequential, Local, and Generalizing Model Updates

(Main Input)

(Entailed Data)

(Local Neutral Data)

(Paraphase Data)

(Random Data)

A viper is a vertebrate.

A viper has a brain.

A viper is venemous.

Chile is a country.

Vipers are vertebrates.

Figure 8.1: Relying only on a Main Input Mi, we want to make a targeted update to a
language model that (1) changes the output for input Mi to a desired label y∗i (e.g. True/False,
or an answer to a question), (2) changes the output for equivalent paraphrases of Mi, (3)
appropriately changes outputs for data Ei entailed by the tuple (Mi, y

∗
i), and (4) does not

change outputs for other logically neutral data LNi, even if it is similar (local) to Mi.

LMs (1) struggle with future data when trained on data from the past [109, 43], (2) generate
morally undesirable text in many situations [55, 18], and (3) simply give inaccurate outputs
for tasks like question answering [118]. Notably, there is good evidence that scaling models to
larger sizes will not fix these particular problems or may even exacerbate them in cases like
imitative falsehoods in QA, so we will likely need an alternative solution [109, 55, 118]. We
next outline a few key contributions of the paper. Figure 8.1 represents the core ideas behind
these contributions.

Detecting beliefs. We measure the degree to which LMs exhibit several properties of
belief-possessing systems, using models finetuned on knowledge-intensive tasks including fact
verification and question answering tasks. Beyond simply checking individual model responses,
we want to assess the structural properties of model outputs: Are they consistent under
paraphrase? Are they logically consistent? Does changing one belief correctly change other
entailed beliefs? Does it erroneously change other unrelated beliefs? Past work has focused
primarily on consistency under paraphrase [52, 38, 132]. Here, we adapt data from Talmor
et al. [201] to measure consistency under entailment (including for contrapositives), and we
use the Wikidata5m dataset [212] to construct logically neutral belief pairs for checking that
models do treat these beliefs as independent.

Updating beliefs. We propose a Sequential, Local, and Generalizing belief update objective
(SLAG) that substantially improves the performance of the KnowledgeEditor method
from De Cao et al. [38]. KnowledgeEditor is a learned optimizer that edits a model’s
weights in order to change its prediction on an input while satisfying other desiderata, like
consistency under paraphrase. Principally, we use more difficult training data for the learned
optimizer, and we also train the network to apply multiple small edits rather than just one
edit. These changes markedly improve the overall update success rate and lower the rate at
which other beliefs are corrupted. Moreover, we find that KnowledgeEditor almost totally
fails when updating multiple beliefs in a row as opposed to a changing a single belief. In this
setting, off-the-shelf optimizers are far preferable methods. However, by explicitly training
the optimizer to update multiple beliefs sequentially, we are able to once again outperform
off-the-shelf optimizers. Lastly, we advocate that these methods be evaluated for their ability
to correct false or morally undesirable model beliefs, rather than to arbitrarily adjust model

52

beliefs to plausible alternatives as in past work [240, 38, 132].

Visualizing belief graphs. We explore a new form of interface with LMs, the belief graph.
Given a set of beliefs, we construct belief graphs by changing each model belief and checking
what other beliefs are sensitive to those changes. Each belief becomes a node, and directed
edges between nodes show that updating one belief changes the other. We discuss graph
metrics that help summarize the dependencies between model beliefs.

We summarize our main conclusions as follows:
1. ∼100M parameter models exhibit limited belief-like qualities, as paraphrase consistency

scores are under 70%, and models show mixed levels of consistency under entailment (Sec.
8.5.1).

2. Off-the-shelf optimizers are surprisingly effective baselines for updating model beliefs, and
they generally outperform learned optimizers when updating a single belief (Sec. 8.5.2).

3. When updating multiple beliefs in a row, method performance greatly declines (especially
for learned optimizers). By using SLAG, we can improve learned optimizers’ performance
beyond what baselines can reach (Sec. 8.5.2).

4. Belief graphs reveal many nonsensical dependencies between model beliefs. We find that
(1) updates are mostly likely to change already incorrect model beliefs and (2) there are
highly connected beliefs which influence a large fraction of all model beliefs (Sec. 8.6.3).

8.2 Related Work

Detecting beliefs in language models. Much past work has explored how information
is stored and represented in pretrained language models [170], though few discuss what
qualifies information as a model belief. Petroni et al. [151] provide evidence that LMs store
relational information between entities, and Roberts et al. [168] show that LMs can answer
open-ended questions. Subsequent work has explored how much knowledge is stored in
LMs [75], approaches to querying models for knowledge [79, 92, 208, 215], and methods for
learning more knowledge during pretraining [212, 211]. Most relevant to our work are studies
from Talmor et al. [201] and Elazar et al. [52]. Talmor et al. [201] train LMs to perform
True/False classification of factual claims, and they measure how a model’s belief in one
fact correlates with its belief in an entailed fact. We use their LeapOfThought dataset to
measure model consistency under entailment before and after updating the up-stream beliefs
in models. Meanwhile, Elazar et al. [52] measure the consistency of model predictions for
sets of paraphrased inputs. We adopt their metric for paraphrase consistency as a measure
of belief. In concurrent work, Kassner et al. [96] discuss consistency under entailment and
paraphrase as conditions for belief, and they measure consistency under entailment with a
new dataset, BeliefBank.

Updating beliefs in language models. Approaches to making targeted updates to model
beliefs vary along a few dimensions. First is whether the methods alter model training or
operate in a post-training setting. Sinitsin et al. [187] use a meta-learning objective during
training to encourage ease of editing afterwards, though the memory requirements of their
approach limit its scalability beyond 100M parameter models. A larger family of methods
make post-training updates to models, differing in how they formalize the update problem:
Dai et al. [36] propose a hand-crafted algorithm for updating model weights, while Zhu et al.
[240] use projected gradient descent for batches of points. De Cao et al. [38] and Mitchell et al.
[132] frame the problem as a machine learning problem and train hypernetworks (learned

53

Dataset Data Type Input Label(s)

zsRE
Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi

Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal;
Arkansas Women’s Hall of
Fame; etc.}

Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of
Arkansas; U Arkansas;
etc.}

FEVER
Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought
Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Table 8.1: Example datapoint from each dataset, and auxiliary data that accompanies the
Main Input. We catalogue examples of noise and other shortcomings for each dataset in
Appendix E.3.

optimizers) that process model gradients in order to produce a new model that (1) gives the
desired output for the edited point, while (2) incorporating other objectives like minimizing
the changes in predictions for other data. Here, we build directly upon the method from
De Cao et al. [38], showing where it fails and providing an improved training objective (SLAG).
In particular, we find that the method struggles with updating multiple beliefs sequentially.
This setting bears some commonality to the continual learning problem, though continual
learning methods generally aim to learn new tasks or datasets rather than make targeted
updates to specific model beliefs [146].

Not all methods edit model weights. Kassner et al. [96] update model beliefs by adding in
relevant information to the input at test time (to improve consistency under entailment). But
as with retrieval-based methods, this approach does not change the model weights and hence
does not influence model outputs on all other potentially relevant inputs [112, 66].

8.3 Updating Beliefs in Language Models

Following De Cao et al. [38], we approach the problem of updating model beliefs as a machine
learning problem and train a learned optimizer to perform desired model updates. We discuss
metrics for detecting beliefs in Sec. 8.5.1 and our approach to visualizing belief graphs in Sec.
8.6.3. The core ideas of our approach are outlined in Fig. 8.1.

Problem statement and metrics. We suppose we have a model fθ = pθ(y|x) parametrized
by θ. For an input xi that has some undesired model output ŷi = argmaxy pθ(y|x), we wish
to obtain a new model θ∗ that produces a desired output y∗i for xi. This new model θ∗ should
also fulfill a few other desiderata. As in past work [38, 132], we operationalize these desiderata
in the following metrics:

1. Update Success Rate (Main Input): The rate at which the updated model gives the
desired output y∗i for the Main Input xi.

54

2. Update Success Rate (Paraphrase): The rate at which the updated model gives the
same new prediction for xi as it does for paraphrases of xi, which are inputs with the
same meaning but different surface form.

3. Retain Rate (All Data): The rate at which the updated model’s predictions are un-
changed for all other data besides the Main Input.

4. ∆-Acc (All Data): The change in accuracy for the updated model on all other data
besides the Main Input.

In practice, Retain Rate (All Data) and ∆-Acc are computed with random subsets of a
dataset, since these must be computed after every belief update. We add two metrics to those
used in past work:

5. Update Success Rate (Entailed Data): The rate at which the updated model makes
predictions that are logically entailed by the model’s prediction for the Main Input.

6. Retain Rate (Local Neutral): The rate at which the updated model’s predictions are
unchanged for data that is similar to the Main Input but still logically neutral.

We use Update Success Rate (Entailed Data) to measure logical consistency for an updated
model, since changing one belief will entail changes in logically entailed beliefs. We also split
“retain accuracy” into two cases, one for randomly sampled data as in past work (All Data) and
the other for specially constructed Local Neutral data. Unlike randomly sampled data, Local
Neutral data is guaranteed to be logically independent of the Main Input, while still being
similar (local) to it. Together, these six metrics better cover the criteria for belief outlined by
Newen and Starzak [140]. We compute the metrics using data of the kind shown in Table 8.1.
For a glossary of terms used for these metrics across papers, see Appendix Table E.5.

Evaluation procedure. To date, methods have been evaluated on the basis of their ability
to change model predictions for all data points, including correctly and incorrectly predicted
points. Moreover, the desired labels {y∗i }ni=1 on sequence prediction tasks have each been
selected from the beam search which produced the original model prediction [38, 132]. We
propose for method evaluation to focus on a more valuable use case: changing the predictions
on incorrect points to be correct. In Sec. 8.5, we show that this is a harder task than simply
changing predictions to other similar outputs, so the effectiveness of past methods has been
overestimated.

Sequential updates. The default evaluation procedure in past work on learned optimizers
is to update a single model belief, evaluate the new model, then rollback the update before
repeating the process for each test point. In Sec. 8.5, we show that it is much harder to
update multiple beliefs in a row before evaluating the new model. This is notable because in
practice, it is likely that model developers will want to update many beliefs of a trained model,
possibly over long timescales, meaning sequential updating is a more realistic application
of update methods. We obtain sequential versions of all our metrics by applying r model
updates in a row before checking the metrics, meaning there are floor(n/r) measurements for
a test set of n points.

55

Belief updating method. We use the KnowledgeEditor architecture from De Cao
et al. [38] with our training objective, SLAG. For the details of this architecture, we refer
readers to Appendix E.1. Let it suffice for now to observe that a new model is given as a
differentiable function

θ∗ = θ + gϕ(xi, ŷi, y
∗
i , θ)

using the learned optimizer gϕ, current LM weights θ, Main Input xi, current prediction ŷi,
and desired model output y∗i . In this chapter, we generalize the update step to occur in a
loop. If we package the above update as θ(k+1) = θ(k) + gϕ(xi, ŷi, y

∗
i , θ

(k)), then we can obtain
new model parameters as

θ∗ = θ(k) +

K−1∑
j=0

gϕ(xi, ŷi, y
∗
i , θ

(k+j))

= Update(xi, ŷi, y
∗
i , θ

(k);ϕ,K)

for a number of steps K from the initial parameters θ(k). In fact, De Cao et al. [38] use such
a loop at test time; we incorporate the loop into training to align the train and test-time
distributions.

Learned optimizer training. The training objective for KnowledgeEditor includes
differentiable terms corresponding to Update Success for the Main Input and paraphrases, as
well as Retain Rate for all other data. We also include terms for Update Success on entailed
data and the Local Neutral Retain Rate, when this is possible given available data. The
overall objective requires several kinds of additional data for each point, which we denote
by DR for other random data, DLN for local neutral data, DE for entailed data, and DP for
paraphrases of xi. For a data point xi with desired prediction y∗i , the full objective is then:

L(ϕ;xi, ŷi, y∗i , θ) = λ1LTask(fθ∗(xi), y∗i)

+ λ2
1

|DP |
∑

xP∈DP

LTask(fθ∗(xP), y∗i)

+ λ3
1

|DE |
∑

xE ,yE∈DE

LTask(fθ∗(xE), yE)

+ λ4
1

|DLN |
∑

xLN∈DLN

KL(fθ∗(xLN)||fθ(xLN))

+ λ5
1

|DR|
∑

xR∈DR

KL(fθ∗(xR)||fθ(xR))

(8.1)

where LTask is the loss used to get gradients for fθ. We use the Cross Entropy loss for binary
classification and sequence-to-sequence tasks.

We optimize this objective w.r.t. ϕ using AdamW [124]. To obtain update labels {y∗i }ni=1,
we always use the opposite class in binary classification. For sequence-to-sequence tasks, we
use the correct label when ŷi is incorrect, and when ŷi is correct, we randomly select another
label from the training data. This choice is in contrast to De Cao et al. [38] and Mitchell et al.
[132], who use samples from the model beam search as update labels for all points.

SLAG objective. To better prepare the update method for evaluation in a sequential-
update setting, we consider training gϕ to update multiple datapoints in a row. Using the

56

per-datapoint loss in Eq. 8.1, we obtain our Sequential, Local, and Generalizing (SLAG) loss
for a set of r Main Inputs D = {xi, ŷi, y∗i }ri=1 as

LSequential(ϕ;D, θt)=
r∑

i=1

L(ϕ;xi, ŷi, y∗i , θt+i) (8.2)

where θt+i = Update(xi, ŷi, y
∗
i , θt+i−1;ϕ,K) are the model parameters obtained from updating

on the first i points in D (starting from θt). This objective allows us to train gϕ to update
multiple beliefs in a row. To ensure training with this objective is still efficient, we limit
how far back through the LM history we backpropagate when computing the gradient w.r.t.
ϕ for each term in the RHS sum of Eq. 8.2. Each parameter vector θt depends on ϕ and
θt−1. We always apply the stop-gradient function to the most recent vector θt−1 to prevent
backpropagating through it (visualized in Appendix Fig. E.1). This choice allows our memory
use to remain constant in r (see Appendix Fig. E.2).

8.4 Experiment Setup

8.4.1 Datasets

We run experiments with four datasets (example data shown in Appendix Table E.7). (1)
FEVER includes 115,409 True/False factual claims [203]. We use the original test set of
10,444 points, and we randomly split the training data into 94,469 train points and 10,496 dev
points. (2) zsRE includes 151,631 questions based on relational knowledge from Wikipedia,
which we randomly shuffle into train/dev/test splits with 80/10/10% of the data [111]. 32.8%
of zsRE questions in each split include paraphrases, and we measure Update Success Rate
(Paraphrase) for only these points. Talmor et al. [201] introduce (3) the LeapOfThought
dataset, consisting of 33,484 factual claims that are entailed to be true or false depending
on a fact and distractor statements provided as context. We drop the distractors from each
input and filter the data so that the facts are unique, then shuffle the resulting 14,939 points
into train/dev/test splits with 60/10/30% of the data.

We also construct (4) a sequence prediction task using data from Wikidata5m, which is a
relational knowledge base with over 20 million triplets [212]. We build this dataset in order
to get Local Neutral data. Each input consists of an entity e1 and relation r, and the label is
another entity e2 that completes the triplet. All inputs come in pairs that share the same
entity e1 but use different relations with different labels. The relations are always one of ten
relations that apply to people (see Appendix Table E.3). In general, the completion e2 to
the Main Input triplet (e1, r1, e2) has no logical consequences for its paired input, (e1, r2, ?).
This means that changing the model belief for the Main Input should not change its belief for
its neutral paired input. The paired points are also local to the Main Input, i.e. they pertain
to the same entity e1 as the Main Input. We obtain four paraphrases for each Main Input
using different aliases for the entity and synonyms of the relation. We construct a train set of
150k points and dev and test sets of 10k points each. See Appendix E.2 for further details.

8.4.2 Methods Evaluated

Models. We train five models with different random seeds for each dataset, using RoBERTa-
base for binary tasks and BART-base for sequence-to-sequence tasks (accuracies in Appendix
Table E.6). For each of the five models, we train one learned optimizer using SLAG and

57

Belief Consistency ↑
Dataset Paraphrase Entailed Contrapos.

LeapOfThought - 85.6 (1.1) 16.5 (2.7)
zsRE 69.5 (1.1) - -
Wikidata5m 25.8 (0.5) - -

Table 8.2: Belief metric results across datasets.

Paraphrase Consistency ↑
Dataset Model Incorrect Model Correct

zsRE 61.39 (1.33) 91.82 (1.17)
Wikidata5m 24.55 (0.48) 37.20 (2.06)

Table 8.3: Paraphrase consistency by the correctness of the model prediction on the Main
Input.

one with the objective from De Cao et al. [38], which we list as KE in tables below. Our
model selection criterion is the mean of: the average Update Success Rate (across data types),
Retain Rate (only for Local Neutral data), and ∆-Acc for All Data. We tune the choice of
SLAG objective terms for each task separately (see Appendix Table E.2 for final selections;
results discussed in Sec. 8.5.3). Other hyperparameters are given in Appendix E.2 and
memory use is shown in Appendix Fig. E.2. To summarize the differences between SLAG and
KnowledgeEditor: (1) we use Ktrain = Ktest rather than Ktrain = 1; (2) we adopt training
labels using real data labels rather than alternatives from the model’s beam search; and (3)
our objective terms differ following tuning.

Baselines. We use off-the-shelf optimizers as baselines. We tune the baseline hyperparameters
separately for each dataset, selecting among several kinds of optimizers, learning rates, and
the number of update steps. The selection criterion is the same as the criterion outlined for
learned optimizers above. The resulting baselines are surprisingly strong (see Appendix Table
E.4 for final selections).

Hypothesis testing. We obtain 95% confidence intervals and perform hypothesis tests via
block bootstrap, resampling model seeds and data points [50]. For ablation experiments, we
run only one model seed per condition.

8.5 Experiment Results

8.5.1 Do LMs have beliefs about the world?

We measure Paraphrase Consistency, Entailment Acc, and Contrapositive Acc for our finetuned
task models. Paraphrase Consistency is the fraction of paraphrase pairs for which a model
produces the same output [52]. Entailment Acc is the accuracy of a model on data that is
entailed by the Main Input. For LeapOfThought (see Table 8.1), “Main Input xi is true”
implies “entailed input xE has label yE ,” but the inverse (¬A ⇒ ¬B) does not necessarily
hold. Therefore, we compute Entailment Acc only where the Main Input prediction is correct.
We do know that the contrapositive holds: “Entailed input xE does not have label yE” implies
that “Main Input xi is false.” So for Contrapositive Acc, we measure how often the model
follows this rule, when the antecedent holds of its prediction.

58

Single-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 100 (0.0) - - - 98.80 (0.2) 0.22 (0.1)
KE 99.98 (0.1) - - - 98.28 (0.3) -0.24 (0.1)
SLAG 99.99 (0.1) - - - 98.41 (0.2) -0.20 (0.1)

LeapOfThought
SGD 100 (0.0) - 72.48 (4.6) - 95.52 (0.4) 1.23 (0.8)
KE 99.78 (0.4) - 74.48 (4.4) - 93.50 (1.3) -1.33 (1.1)
SLAG 100 (0.0) - 75.50 (4.3) - 94.92 (1.4) -1.31 (1.2)

zsRE
SGD 99.36 (0.1) 94.44 (0.6) - - 74.73 (0.4) -0.43 (0.1)
KE 84.73 (1.4) 89.26 (1.8) - - 71.55 (2.4) -2.19 (0.4)
SLAG 94.29 (0.4) 94.71 (0.5) - - 80.48 (1.3) -0.29 (0.1)

Wikidata5m
SGD 98.05 (0.3) 68.78 (0.8) - 41.46 (1.0) 58.62 (0.6) -1.97 (0.3)
KE 74.57 (2.9) 58.05 (2.2) - 40.84 (1.8) 53.58 (2.2) -3.03 (0.5)
SLAG 87.59 (0.6) 80.70 (0.9) - 47.85 (1.0) 63.51 (1.3) -1.71 (0.3)

Table 8.4: Belief update metrics for off-the-shelf optimizers, KnowledgeEditor (KE) from
De Cao et al. [38], and SLAG, with rtest = 1. Bolded numbers are the best in their group at a
statistical significance threshold of p < .05 (or lower). Our SLAG objective improves over KE,
but off-the-shelf optimizers perform surprisingly well.

Update Success Rate ↑ ∆-Acc ↑
Desired Label Main Input Paraphrase All Data

Beam Label 97.41 (0.3) 97.03 (0.4) -0.30 (0.1)
Correct Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 8.5: Evaluation difficulty by desired model output, for a learned optimizer trained
with SLAG on zsRE.

Belief measurement results. Table 8.2 shows the belief metrics for each dataset. We find
that ∼100M parameter models show limited evidence of having beliefs about the world. Para-
phrase consistency is 69.50% (± 1.09) for zsRE and much lower for Wikidata5m (25.84%±0.53).
While entailment accuracy is high for LeapOfThought (85.63%±1.08), the model is consistent
under the contrapositive only 16.51% (± 2.71) of the time. One might reasonably set the bar
for qualifying as a “belief” higher than these scores. But since belief-likeness comes in degrees,
we continue to refer to model beliefs for the rest of the paper. Interestingly, the metrics are
much higher when the model prediction on the Main Input is correct (Table 8.3).

8.5.2 Can we update beliefs in LMs?

First, we compare two evaluation procedures for sequence prediction tasks: correcting model
beliefs versus changing them to an alternative from the model’s beam search. We do so for zsRE
using SLAG. Next, we compare belief update metrics across datasets using KnowledgeEd-
itor, SLAG, and off-the-shelf optimizers as baselines. We report results in single-update
(rtest = 1) and sequential-update (rtest = 10) settings. See Appendix Fig. E.3 for an ablation
across rtest.

Correcting beliefs vs. changing beliefs. Given the results in Table 8.5, we find that
correcting model outputs is harder than simply changing them to a plausible alternative.
Update Success can rise by a full 2.96 (±0.48; p<1e−4) points for Main Inputs and 2.58

59

Sequential-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main InputParaphrasesEntailed DataLocal Neutral All Data All Data

FEVER
AdamW 92.81 (1.3) - - - 91.86 (1.4) 1.16 (0.6)
SLAG1 74.13 (1.8) - - - 39.86 (0.7)-27.13 (1.3)
SLAG10 91.27 (2.9) - - - 70.30 (5.8)-11.96 (4.5)

LeapOfThought
SGD 100 (0.0) - 61.34 (5.0) - 82.62 (0.8) -4.93 (1.0)
SLAG1 96.14 (2.3) - 49.27 (6.0) - 72.45 (0.9)-15.03 (1.0)
SLAG10 100 (0.0) - 50.46 (5.5) - 74.02 (1.1)-13.03 (1.3)

zsRE
SGD 82.71 (0.6) 90.81 (0.7) - - 40.49 (0.6) -2.38 (0.3)
SLAG1 0.10 (0.1) 36.55 (1.4) - - 0.05 (0.1)-20.98 (0.7)
SLAG10 87.57 (0.6)92.20 (0.7) - - 47.19 (0.7) -1.74 (0.3)

Wikidata5m
SGD 56.82 (0.8) 54.49 (0.7) - 6.40 (0.4) 26.37 (0.6) -3.96 (0.4)
SLAG1 0 (0.0) 40.84 (0.9) - 0 (0.0) 0 (0.0)-10.05 (0.6)
SLAG10 58.27 (1.0)65.51 (0.9) - 7.36 (0.5)27.76 (0.7) -3.62 (0.4)

Table 8.6: Belief update results when a model is sequentially updated rtest=10 times. SLAGR

uses rtrain=R. On sequence prediction tasks in this setting, SLAG can outperform the
off-the-shelf optimizers across metrics.

(±0.81; p<1e−4) for Paraphrases, while ∆-Acc is virtually unchanged. This suggests that
that past work has overestimated the efficacy of belief update methods for actually fixing
models. Henceforth we evaluate methods according to their ability to update model beliefs to
be true.

Update method results (single update). Table 8.4 shows the results in a single-update
setting. First, we find that off-the-shelf optimizers are very effective across the board. The
baselines show Main Input Update Success Rates of 100% for binary tasks with positive
∆-Acc scores.1 On sequence prediction tasks, SGD achieves 98%+ Main Input Update Success
with competitive ∆-Acc scores. When strongly tuned, these baselines outperform learned
optimizers on most metrics here.

However, SLAG does surpass the baselines in a few places. All Data Retain Rate on zsRE
rises by 5.77 points (±1.43; p<1e−4), and on Wikidata5m we improve Paraphrase Update
Success by 11.92 points (±1.20; p<1e−4) and the Local Neutral Retain Rate by 6.40 (±1.41;
p<1e−4) points. The gain on Entailed Data Update Success is 3.02 points, but it is not
significant (±6.26; p=.345). The SLAG objective also greatly improves performance over KE
for sequence prediction tasks.

Update method results (sequential updates). We give results for a sequential update
setting (rtest=10) in Table 8.6. Immediately we see this is a much more difficult setting for
updating model beliefs, as update metrics are generally much lower for each dataset. Next,
we observe that learned optimizers with SLAG10 (rtrain=10) now outperform baselines on
sequence prediction tasks. On zsRE, we improve Update Success for Main Inputs by 4.86
(±0.83; p=1e−4) and for Paraphrases by 1.39 (±0.93; p=.004), with better ∆-Acc by 0.64
(±0.35; p=.0005). Improvements trend in the same direction for Wikidata5m and are all
statistically significant except for the gain in ∆-Acc. The jump on Paraphrases in particular is
very large (11.02±1.17; p<1e−4). In comparison, using a non-sequential (rtrain = 1) training

1Positive ∆-Acc values are possibly due to distribution shift in the test split. In FEVER, for instance, the
train and dev data are 73% True, while test data is 50% True. On the dev split, AdamW achieves a negative
∆-Acc, -0.18 (±0.11).

60

Metric Before Update After Update

Entailment Acc 58.30 (5.7)* 75.50 (4.3)
Para. Cons (zsRE) 61.39 (1.3) 94.53 (0.6)
Para. Cons (Wiki) 24.69 (0.5) 84.56 (0.9)

Table 8.7: Entailment Acc and Paraphrase Consistency rise considerably after model updates
to incorrect points. *All Main Inputs in this subset are wrongly predicted as false, so the
entailment does not actually hold.

objective leads to drastic drops in performance.
Learned optimizers still struggle with the binary datasets compared to the off-the-shelf

optimizers. The baselines achieve high update update success with much better ∆-Acc scores,
by 13.12 (±4.51; p=1e−4) on FEVER and 8.16 (±1.63; p=1e−4) on LeapOfThought. Also
on LeapOfThought, the baseline’s update success with entailed data is over 10 points higher
(±7.38; p=.004).

8.5.3 How does the learned optimizer objective influence performance?

Here, we discuss ablations with respect to the terms in the training objective, Eq. 8.1. We
show the effect of Ktrain in Appendix Fig. E.6 and the choice of optimizer training labels in
Appendix Table E.8.

Training objective ablation. We give objective ablation results in Appendix Table E.9.
Surprisingly, we do not always see that the objective terms help for the data they are intended
to help with. First, we obtain mixed results for the paraphrase objective. On zsRE, the
objective term seems to hinder performance, with update success dropping on Main Inputs
by 0.71 (±0.60; p=.021) and ∆-Acc dropping by 0.18 (±0.19; p=.069), while the paraphrase
Update Success Rate itself is unaffected. With Wikidata5m, however, the paraphrase term
improves paraphrase update success by a large margin of 16.94 (±1.03; p<1e−4) points.
Adding the Local Neutral (LN) term with the paraphrase term greatly improves the LN
Retain Rate for Wikidata5m, by 9.71 points (±1.44; p<1e−4), though both of these terms
come at a cost to Main Input Update Success, similar to zsRE. Lastly, we do not find that
the entailment objective improves Entailed Data Update Success; in fact, this metric falls by
4.56 (±7.22; p=.213) points with the objective.

8.6 Analysis

8.6.1 Belief updates improve consistency

In Table 8.7, we show belief metrics before and after model updates using SLAG with rtest=1.
We observe that belief updates greatly improve paraphrase consistency and entailment accuracy
for updated data. Paraphrase consistency rises by 33.14±1.46 on zsRE and 59.87±1.09 on
Wikidata5m, while Entailment Acc rises by 17.20±7.10 points. To see if these improvements
depend on pre-update consistency, we plot paraphrase consistency before and after updating
in Fig. 8.2. For zsRE, consistency rises irrespective of pre-update consistency. There is a
noticeable trend for Wikidata5m paraphrases, where post-update consistency is 90.1% when
pre-update consistency is maxed out, versus 77.1% for totally inconsistent pre-update beliefs.
We conclude that learned optimizers can induce a fairly consistent model belief even where
there is no consistent belief to begin with.

61

zsRE

Wikidata5m

0.00 0.25 0.50 0.75 1.00

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Pre−Update Consistency

P
os

t−
U

pd
at

e
C

on
si

st
en

cy

Updates Improve Consistency Everywhere

Figure 8.2: Post-update consistency under paraphrase is high even for points with low
pre-update consistency.

8.6.2 Which beliefs are hard to retain when updating other beliefs?

We find that the Retain Rate depends heavily on whether the predictions on that data are
correct to begin with. On zsRE for instance, the retain rate on correct inputs is about 96%,
while for incorrect predictions, it is about 75%. So it appears that incorrect predictions are the
most sensitive to model updates, and these points merely change from one incorrect prediction
to another. On FEVER, incorrect beliefs change around 4% of the time, while correct beliefs
change only 2.5% of the time.

We also find that Local Neutral beliefs are much harder to avoid changing than simply
random data. For Wikidata5m in Table 8.4, the Retain Rate on All Data is 61.51±1.33, while
for Local Neutral data it is a full 15.66 points lower, at 47.85±0.96.

8.6.3 Belief Graphs

We now construct belief graphs for the purpose of better understanding the connections
between model beliefs. We form the graphs from a set of datapoints by updating each
prediction and checking what other predictions change. We represent each datapoint as its
own node in a belief graph. Whenever updating a datapoint u changes the model prediction
for point v, we draw a directed edge from u to v. Following our results in Sec. 8.5.2, we use
off-the-shelf optimizers to change the model output to the opposite of its original prediction
for every datapoint. The resulting graphs have up to n2−n edges (no self edges). For FEVER
we obtain a graph of 10,444 nodes, and for LeapOfThought we obtain a graph with 8642
nodes, which is double the original test set size because we include both Main Inputs and
Entailed Data as their own nodes.

We visualize part of a belief graph in Fig. 8.3. This figure shows a non-random subgraph
intended to give a representative view of the data (we give three random subgraphs of 20
nodes in Appendix E.5). On inspection, we see no reason that beliefs are connected or not
connected. Whether or not changing one belief changes another appears essentially random.
We come to same conclusion looking at other random subgraphs (see Appendix Figures E.7,
E.8, E.9). However, we do know of some aggregate trends from earlier results. Sec. 8.6.2
suggests that a model’s incorrect beliefs are most likely to change after model updates, and
following Sec. 8.5, we have reason to believe that Local beliefs are more likely than others to
change with model updates.

We highlight a few summary statistics here from Table 8.8 for a broader view of the graphs.
First, % Edgeless is the proportion of nodes which have no in or out edges. Since this is 0

62

Middle-earth is a real place.
[y: false]

Hot Right Now is mistakenly
attributed to DJ Fresh.

[y: false]

There are no musical or creative
works in existence that have
been created by Phillip Glass.

[y: false]

The Daily Show is incapable
of focusing on recent news

stories.
[y: false]

The Chrysler Building was
always the world's shortest

building.
[y: false]

Shane McMahon officially
retired on the first day of

2010.
[y: false]

Bessie Smith died on April
26, 1937.
[y: false]

Despicable Me 2 was written
by Cinco Paul.

[y: true]

Hot Right Now is from Nextlevelism.
[y: true]

Figure 8.3: A non-random subgraph of the belief graph for a model trained on FEVER.
Directed edges from u to v indicate that changing the model belief in u causes the belief in v
to change. The ground-truth label is given in brackets for each point, and node color shows
the model’s accuracy before any updates (green=correct).

Dataset

Metric FEVER LeapOfThought

Nodes 10,444 8,642
% Edgeless 0.0 0.0
Edges Total 1.88m 9.71m
In Edges (95th perc.) 1,088 5,347
Out Edges (95th perc.) 390 3,087
Corrupted (95th perc.) 211 2,752
% Update-Transitivity 66.64 24.38*

Table 8.8: Belief graph summary statistics. *We compute Update-Transitivity for
LeapOfThought with n = 4000 points due to computational cost.

for both datasets, every belief can be changed by editing the right belief. # In Edges is the
number of in edges at the 95th percentile, meaning 5% of beliefs have more in edges than this
value, and the same holds of # Out Edges. These values grow to a rather large fraction of the
overall datasets, suggesting that (1) some beliefs are sensitive to changes in a large fraction
of all beliefs, and (2) some beliefs are influential to hundreds of other beliefs when changed.
Corrupted is the number of correct predictions changed to be incorrect following a model
update. For 5% of the data, model updates cause at least 211 points to become incorrectly
predicted on FEVER, and 2,752 points for LeapOfThought. Lastly, % Update-Transitivity
represents the answer to the question: if updating belief A changes belief B, and updating
belief B changes belief C, what proportion of the time does updating A change C? For these
datasets, a logically consistent model should display 100% Update-Transitivity (see Appendix
E.4 for a caveat on this metric). We find that belief updates often yield intransitive results
for both datasets.

8.7 Discussion and Conclusion

Degrees of commitment to beliefs. The data we use comes in the form of declarative
statements and answers to questions. These utterances take what is called a veridical stance
toward a proposition, displaying a “full commitment” to that proposition’s truthfulness [60].
It will be valuable for future work to explore two dimensions of uncertainty in beliefs: (1)

63

expression of uncertainty in language, via partial or trivial commitments (like “X might be
Y”) and (2) expression of uncertainty mathematically, via probabilities assigned by a model
to utterances or True/False values. In this chapter we treat a belief as “updated” when the
model output changes, but this ignores any underlying change in the distribution pθ(y|x) that
could occur even if its mode does not change.

Ethics and dual use concerns. Belief update methods may be used to either correct
undesired beliefs or induce problematic beliefs in LMs, and it is not clear whether these
capabilities could be separated. We propose to evaluate methods only on the basis of their
ability to correct mistaken model beliefs, but the malicious use case remains. We are uncertain
about how a bad belief would influence the general behavior of a model (e.g. answers to
many questions), but it is possible that a belief update method could instill bad beliefs in
a generally capable LM with far-reaching implications for model behavior. That said, we
hope that these methods will instead be used to update undesirable moral, social, and factual
beliefs in large LMs.

Conclusion. We first discuss criteria for detecting when LMs have beliefs about the world.
Next, we argue for evaluating belief update methods by their ability to correct mistaken
beliefs, which is harder than the evaluation done in past work. We show that strongly tuned
off-the-shelf optimizers make for surprisingly good belief update methods, even surpassing
specialized learned optimizers in several settings. But with a new training objective (SLAG),
we are able to outperform these baselines on sequence prediction tasks when updating multiple
beliefs one after another. Finally, we introduce belief graphs as a means of understanding the
connections between model beliefs. We find that model beliefs are highly interconnected, with
some beliefs influencing hundreds of other beliefs. While it is hard to point to concrete reasons
for individual connections between beliefs, we identify several patterns in the dependencies
between beliefs.

64

9 Localization and Editing of Knowledge in LMs

Lastly, I present work at the intersection of interpretability and controllability for language
models. The question is: does understanding how language models store factual knowledge
help us update what knowledge they store?

9.1 Introduction

Language models learn a variety of facts about the world during pretraining that can be
elicited via natural language prompts [151]. Recent work explores how these facts are stored in
model weights and expressed in response to particular prompts, suggesting that MLP weights
act as key-value memories that support factual association [57, 128, 58]. Besides improving
our scientific understanding of pretrained language models, this kind of investigative work
may enable the design of better model editing methods for injecting new facts into model
weights, and indeed it has been used to motivate the ROME and MEMIT model-editing
methods [128, 129]. These recent methods set a new state of the art for weight edits that
successfully rewrite stored facts in language models. Model editing methods could be broadly
useful for correcting factual errors in pretrained models, avoiding morally undesirable outputs,
and updating models with changing knowledge over time.

ROME Edit Layer
MEMIT Edit Layers

0

50

100

150

200

1 4 8 12 16 20 24 28

Layer in GPT-J where Causal Tracing effects peak

N
um

. P
oi

nt
s

How often does Causal Tracing peak in each layer?

Figure 9.1: We visualize where 652 facts
known by GPT-J are stored within the model,
as localized by Causal Tracing. Model editing
methods like ROME and MEMIT can success-
fully change knowledge in LMs by editing layers
4-9. But many facts appear to be stored out-
side of this range, e.g. at layers 1-3 and 16-20.
What about these facts?

The connection between localization
(identifying components of a model responsi-
ble for a certain behavior) and editing (chang-
ing model components in order to change
model behavior) is predicated on the reason-
able assumption that one should go about
editing a model by first localizing a behavior
to a specific component and then choosing to
edit that particular component. In the case of
ROME and MEMIT, localization is done via
Causal Tracing, which measures the informa-
tion content of hidden representations, and
editing is done by treating MLP weights as
linear associative memories and injecting new
key-value memories into the weights. Meng
et al. [128, 129] choose to edit early MLP
layer(s) based on results from Causal Tracing
showing the largest causal effects on average
in early layers.

Surprisingly, the assumption that
one should change the knowledge in a
model by editing the weights where it
is stored turns out to be false. In fact,
localization results from Causal Tracing are statistically uncorrelated with the success of an
edit injecting a new fact into MLP weights. Using the CounterFact dataset from Meng et al.
[128] with a GPT-J model [209], we show that (1) not only is a substantial fraction of factual

65

knowledge stored outside of the range of layers edited by ROME/MEMIT (see Fig. 9.1),
(2) the correlation between Causal Tracing results and edit success is near zero (for several
editing methods including ROME, MEMIT, and Adam-based finetuning). We note that this is
surprising largely because ROME and MEMIT do work well for editing facts, in spite of Causal
Tracing often suggesting knowledge is stored elsewhere than early-to-mid-layer MLP weights.

In the face of this result, we attempt to recover the connection between tracing-based
localization and editing by introducing four variants of the default model editing problem.
Each variant differs in terms of the input, target, or objective used in the editing problem.
One variant we introduce, called Fact Forcing, is designed to match Causal Tracing along
these three factors. Specifically, Fact Forcing uses a noised input and involves maximizing the
probability of the correct target output, just like Causal Tracing. We find that tracing results
are related to edit success for Fact Forcing. However, even for this variant, it is still better to
ignore the tracing results and always choose an early-to-mid-layer MLP weight for editing. We
conclude that, although Causal Tracing is a reasonable localization method that has yielded
insight into how models store factual information, this insight does not actually indicate which
model layers we should edit in order to manipulate what facts are stored in language models.

To summarize, our conclusions are as follows:

1. We find that model edit success is essentially unrelated to where factual information is
stored in models, as measured by Causal Tracing. Robustness experiments generalize this
result across causal localization methods, editing methods, editing metrics, models, and
datasets.

2. To reconnect localization with editing performance, we introduce four variants of a standard
model editing problem, including Tracing Reversal, Fact Erasure, Fact Amplification, and
Fact Forcing.

3. Edit success and tracing effects correlate best in the Fact Forcing setting. However, tracing
effects explain only a small fraction of the variance in editing performance, while the choice
of edit layer is a much more important factor. This suggests that, surprisingly, localization
insights from Causal Tracing are not useful for choosing which model layer to edit.

9.2 Related Work

Localization. A long line of work aims to interpret what certain hidden representations
represent, or, in the reverse direction, to understand how a given concept is represented in
a model. Both of these efforts aim to localize behaviors to specific model components. We
group these methods based on the kinds of model components they consider (e.g. layers,
neurons, etc.).

Many works focus on individual layers or weight matrices [229, 170, 38, 181, 53]. In
this chapter, we adopt the layer-wise localization method from Meng et al. [128] known as
Causal Tracing, which estimates the information content of a set of representations via a
denoising operation. We specifically focus on MLP layers given evidence of their role in factual
association [57, 128, 58].

Related to analysis at the layer level, other work aims to localize concepts to direc-
tions in a latent space, dating back to work interpreting directions in word vector space
[130, 98, 237, 59, 231, 29]. One might also place “key-value memory” theories of weight matrices
in this category since a key vector represents a direction in the latent space [14, 178, 57, 128].

66

Neurons, meanwhile, are the most common focus of localization analysis. Past work
explores the functions of groups of neurons and subnetworks [142, 34, 39, 23] or simply
individual neurons [159, 236, 104, 15, 207, 137, 36, 105, 19, 78, 35, 213].
Relating Localization to Editing. Many works on localization validate the quality of their
conclusions by editing neuron activations or layer weights corresponding to a particular concept,
then checking that the network behavior changes appropriately. For example, Dai et al. [36]
check that their “knowledge neurons” have localized a specific fact by amplifying or suppressing
the expression of that fact via adjusting the corresponding neuron activations. Altogether,
we find many localization analyses are validated by editing models in suggested locations
[159, 104, 15, 137, 207, 36, 105, 35, 213, 23] or directions in the latent space [130, 14, 178, 128].

Changing model behavior by editing components suggested by localization seems like a
reasonable validation step. However, in isolation, it paints an incomplete picture that has led
to misleading interpretations about the connections between localization and editing. Such
experiments alone do not show whether editing that specific component is (1) successful in
proportion to the strength of the localization, (2) necessary to achieve the desired behavior,
or (3) the best option for editing. In particular, these experiments do not show whether the
same change in behavior can be achieved elsewhere in the network. Meng et al. [128] consider
this question by measuring editing success across layers, averaged across data, then comparing
the results with Causal Tracing conclusions also averaged across data. However, as we show,
more fine-grained analysis at the datapoint level reveals the unexpected result that tracing
results are unrelated to edit success. We are not aware of any work that primarily investigates
the connection between localization and editing or that demonstrates better model editing at
locations elsewhere in the network than those suggested by localization analysis.

9.3 Notation and Background

9.3.1 Data Notation

Following Meng et al. [128], we consider facts of the form (s, r, o), where s represents a subject
entity (e.g. Paris), r a binary relation (e.g. is located in), and o an object (e.g. France) for
which the tuple (s, r, o) represents a factual assertion about the world. In the CounterFact
dataset [128], each datapoint is a prompt P for some fact (s, r, o). So, P might be “Paris is
located in” or “Paris is situated in,” to be completed by the object o to form a true statement.
In an abuse of notation, we will often use s and r to refer to textual representations of a
subject and relation, for instance by writing a model’s conditional probability as pθ(·|s, r)
instead of pθ(·|P). We do so in order to more easily indicate when an input is provided where
the subject or relation has been manipulated (described next).

We make use of a few variations of the data for the fact (s, r, o). The additional variables
include:

1. s∗ is a “neighboring” entity to the subject s (similar to s) for which (s∗, r, o) is a true fact
like (s, r, o). In CounterFact, “Marseille” is a neighboring entity to “Paris.”

2. r∗ is a paraphrase of the relation r, such as “is situated in” for “is located in.”

3. snoise is a noised representation of the subject s. We add Gaussian noise to the token
embeddings of s, following Meng et al. [128].

4. ofalse is an object that incorrectly completes the tuple (s, r, ·). CounterFact contains an
ofalse for each datapoint, intended to be the new model output when evaluating model
editing methods.

67

5. otrue, for clarity, is the object that correctly completes the fact (s, r, ·), from CounterFact.

9.3.2 Causal Tracing

We give a brief description of Causal Tracing here and refer readers to Meng et al. [128] for
more information (see Fig. 9.2 for an example visualization). Causal Tracing is a method
for localizing information in the forward pass of an autoregressive Transformer to specific
hidden representations. For a model with L layers, the input is a prompt containing T
tokens (including a subject s and relation r). Given this input, the forward pass produces
T × L layer outputs (one representation per T tokens and L layers). The algorithm aims to
estimate the amount of information about the fact (s, r, otrue) that is contained in each of
these representations. We denote the representation at token t and layer ℓ as v(t,ℓ).

The amount of factual information in v(t,ℓ) is estimated by copying this representation
into a different forward pass obtained from using a noised subject in the input:

Tracing Effect = pθ(otrue|snoise, r, v(t,ℓ))−pθ(otrue|snoise, r)

0 5 10 15 20
Center of 10 Restored Layers

 Orig Prob: 0.923, Noised Prob: 0.001

The*
 Space*
 Need*

le*
 is
 in

 the
 city

 of

MLP Tracing Effect (Window Size: 10)

0.1

0.2

0.3

0.4

0.5

p(Seattle)

Figure 9.2: Visualizing Causal Tracing re-
sults over MLP layers with window size 10.
Tokens with an asterisk are the noised sub-
ject tokens. Here, pθ(otrue|s, r)=.923 and
pθ(otrue|snoise, r)=.001.

where snoise indicates that we add Gaussian
noise with σ = 0.094 to the token embed-
dings of s following Meng et al. [128], and
v(t,ℓ) is the representation at token t and
layer ℓ in the forward pass on the origi-
nal prompt P = (s, r). The probability
pθ(otrue|snoise, r, v(t,ℓ)) is computed by (1)
running the model forward pass on the noised
prompt P ∗ = (snoise, r) until layer ℓ, (2) over-
writing the existing representation at token
t and layer ℓ with the representation v(t,ℓ),
then (3) computing the remaining L− ℓ lay-
ers as normal using this adjusted set of T
representations as input (adjusted at token
index t). Thus, Causal Tracing estimates the
information content of a representation in
terms of its effect on the probability of the
true target. The results from Causal Tracing
show where the representations containing
information about the true target are in the
model forward pass.

In practice, a set of representations
from multiple adjacent layers is copied
from the clean forward pass rather than a single layer’s representation (for instance,
ten layers in Fig. 9.2). The size of this set is referred to as the tracing window size. A window
size of, e.g., three implies that the tracing effect at layer ℓ estimates the amount of information
contained in the three representations v(t,ℓ−1), v(t,ℓ), and v(t,ℓ+1). See Appendix Figs. F.4 and
F.5 for analysis of the parameter’s effect. In this chapter, we use a tracing window size of 5
by default, and we apply Causal Tracing exclusively to MLP layers, given evidence of their
role in factual association [57, 128].

68

9.3.3 Model Editing with ROME

Autonomous University of Madrid,
which is located in

Input Prompt:

Requested Edit:

Paraphrase:

Neighbor:

Spain Sweden

and Sallie Beavers Riley. Autonomous
University of Madrid is located in

Ripollès, located in

CounterFact Example

Figure 9.3: An example CounterFact datapoint.

We describe the ROME editing method here
since we use it in our analysis in Sec. 9.4, and
later in Sec. 9.5 we outline additional edit-
ing methods we consider. For mathematical
detail, see Meng et al. [128].

The input to ROME includes a prompt
P = (s, r) and a new desired output, which
is always a false target ofalse in the Counter-
Fact dataset. To change the model prediction
to ofalse, ROME applies a rank one edit to
the down-projection matrix in a prespecified
MLP layer in the model. The default layer
in GPT-J is layer 6, following from averaged
Causal Tracing results. ROME also makes use of covariance statistics of different subject
representations obtained from a larger corpus as it edits individual facts. Overall, the method
is designed to optimize the quantity pθ(ofalse|s, r) while aiming to satisfy some other constraints
reflecting what a desirable model edit is (described in Sec. 9.3.4 next).

9.3.4 Editing Metrics

Editing methods are typically evaluated according to their ability to (1) change the model
prediction on the input P provided at runtime, (2) generalize appropriately to paraphrases of
the prompt P , and (3) avoid over-generalizing to unrelated data [240, 38, 132, 70, 133]. We
adopt metrics for each desideratum that we compute with available CounterFact data. Instead
of the exact “magnitude” metrics from Meng et al. [128], we use normalized versions of each
metric that we design to scale from 0 to 1 depending on whether the edit was maximally
(un)successful, for purposes of making scores more comparable across data points. We denote
the new edited weights of the LM as θ∗ and its pre-edit weights as θ. See Fig. 9.3 for an
example of the kinds of data these metrics are computed on.

1. Rewrite Score. The rewrite score measures how much an edit improves the target probability
p(ofalse|s, r) as a fraction of the maximum possible improvement:

pθ∗(ofalse|s, r)− pθ(ofalse|s, r)
1− pθ(ofalse|s, r)

2. Paraphrase Score. The paraphrase score measures the target probability using syntactical
paraphrases as inputs, always preserving the exact subject wording:

pθ∗(ofalse|s, r∗)− pθ(ofalse|s, r∗)
1− pθ(ofalse|s, r∗)

which is averaged over multiple available paraphrases per input P . The score measures
whether edits properly generalize across semantically equivalent prompts.

3. Neighborhood Score. The neighborhood score measures whether edits change predictions
for prompts with a similar subject s∗, the same relation r, and the same (true) objects.

69

We scale the difference in probabilities so that 1 means the probability did not change
(good), and 0 means it changed to the maximum extent possible (bad):

1− |pθ∗(ofalse|s
∗, r)− pθ(ofalse|s∗, r)|

.5 + |pθ(ofalse|s∗, r)− .5|

The score measures whether edits avoid over -generalizing from the prompt P to different
subjects.

9.4 Does Edit Success Follow From Localization?

Ostensibly, localization results should inform editing methods because it should help to know
where information is stored in a model if you are going to manipulate the model’s expression
of that information. More specifically, if you wanted to inject a false belief (s, r, ofalse) into a
model (as defined in the ROME editing problem), it seems helpful to know which weights store
the true fact (s, r, otrue), so that you could replace some stored representation of otrue with
that of ofalse. This underlying assumption about editing models appears in much past work on
localization, where editing is used to verify localization analysis (see Sec. 9.2). In this section,
we investigate the validity of this assumption as it applies to autoregressive Transformers.

9.4.1 Experiment Design

The goal of our experiments is to determine, for a given datapoint, whether edit success at a
specific layer aligns with the results from Causal Tracing at that layer (see Causal Tracing
description in Sec. 9.3.2). We operationalize this outcome and explanatory variable as follows:

1. Edit Success. We primarily consider Rewrite Score as our measure of edit success, given
that this is the main optimization objective of ROME. Note ROME achieves an average
rewrite score of 99% at layer 6 of GPT-J and above 96% at layers besides the last layer of
the model.

2. Tracing Effect at layer ℓ. Since the output of Causal Tracing is a T × L grid of estimates,
we obtain a single tracing effect per layer by taking the max across the T token effects at
each layer (i.e., we collapse the grid in Fig. 9.2 down to a single curve across layers). Like
our other metrics, we use a fractional tracing effect where 0 means the intervention had no
effect and 1 means it fully restored the original probability pθ(otrue|s, r):

pθ(otrue|snoise, r, v(t,ℓ))− pθ(otrue|snoise, r)
pθ(otrue|s, r)− pθ(otrue|snoise, r)

Lastly, note we use a tracing window size of 5 (smaller than the value of 10 used in Fig.
9.2).

9.4.2 Model and Data

We conduct our analysis with GPT-J [209] using the CounterFact dataset, similar to Meng
et al. [128]. GPT-J is a 6 billion parameter autoregressive language model. We record editing
performance at layers in {1, 5, 9, 13, 17, 21, 25, 28} as well as layer 6 (the default for ROME).
Note ROME achieves an average rewrite score of 99% at layer 6 and above 96% at layers
besides layer 28.

70

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Tracing Effect (Fraction Restored)

R
ew

ri
te

 S
co

re

ROME Rewrite Score by Tracing Effect at Layer 6

Figure 9.4: The correlation between ROME edit success and the tracing effect at layer 6 in
GPT-J is not positive but in fact slightly negative (ρ = −0.13; p <1e−3). The dashed red
line shows a hypothetical perfect relationship.

The CounterFact dataset includes datapoints consisting of a prompt, paraphrases, and
neighboring points. For each point, a new (false) target is supplied for editing purposes. We
show an example datapoint in Fig. 9.3. Note paraphrases intentionally include unrelated text
preceding a syntactical paraphrase of the input, with the idea that this text should not affect the
output. We select data for experiments from 10% of CounterFact, additionally filtering to a sub-
set of facts that are correctly completed by GPT-J, in order to ensure that there is knowledge to
localize in the model for each point (details in Appendix F.1). Our final sample size is n = 652.

9.4.3 Experiment Results

We present results in two ways. First, in Fig. 9.4, we show Rewrite Score as a function of
the (fractional) tracing effect. The red dotted line shows a hypothetical perfect relationship
between tracing and edit success. Surprisingly, there is not a positive relationship but a
negative relationship between the rewrite score and the tracing effect (linear correlation of
ρ = −0.13; p <1e−3). This seems to fully invalidate the assumption that editing should be
most effective when it occurs at a layer where information is stored about the edited fact.
We wish to emphasize, however, that in most layers we simply see a near-zero rather than
negative correlation, as shown in Appendix Fig. F.9.

Table 9.1: R2 values for predicting ROME edit
success. Tracing effects explain essentially none
of the variance in rewrite score, while the choice
of edit layer is very important.

R2 Values

Method Layer Tracing Effect Both

ROME 0.947 0.016 0.948

Our second mode of analysis is though
linear regression models predicting rewrite
score based on (1) the tracing effect, (2) the
choice of edit layer treated as a categorical
variable, or (3) both terms interacted, again
treating edit layer as a categorical variable.
The purpose of the models is to show how
much of the variance in rewrite score is ex-
plained by one variable versus the other. We
show the resulting R2 values in Table 9.1. We
see that the choice of layer explains almost

71

Editing Problem Variants

Error Injection

Fact Amplification

Fact Erasure

Fact Forcing

Tracing Reversal Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Autonomous University of Madrid, which is located in

Add noise to subject

Autonomous University of Madrid, which is located in

Input Prompt Objective

Figure 9.5: Depiction of editing problem variants. Rather than inject a new false fact into a
model (Error Injection), we consider injecting the output obtained from noising the subject
entity (Tracing Reversal), erasing a stored fact (Fact Erasure), amplifying a stored fact (Fact
Amplification), or forcing a known fact onto the same kind of noisy input as used in Causal
Tracing (Fact Forcing).

all of the variance in rewrite score (94.7%), while adding the tracing effect to the model raises
the R2 only to 94.8%. This means that the tracing effect is able to explain only 0.1%
of the variance in edit success when accounting for the choice of edit layer. These results
suggest that the tracing effect is essentially unrelated to the success of model editing.

This is a surprising conclusion, and it naturally raises the question of why applying ROME
at layer 6 works well in the first place (see average rewrite, paraphrase, and neighborhood scores
across layers in Appendix Fig. F.1). We suggest a possible answer to this question in Sec. 9.6.

Additional Robustness Experiments. We include additional results in Appendix F.2
using another dataset, ZSRE [111] (Figs. F.13 and F.14, Table F.7), and another localization
method, representation zeroing [15] (Figs. F.15 and F.16). Further robustness experiments in
Appendix F.3 include results with (1) other measures of edit success including Paraphrase
Score, Neighborhood Score, and an Overall Score (Tables F.3, F.4 and F.5), (2) different
values of the tracing window size (Fig. F.6), (3) GPT2-XL rather than GPT-J (Fig. F.7),
(4) the original unscaled metrics from Meng et al. [128] (Fig. F.8), and (5) tracing effects
measured at the last subject token rather than the max across tokens (Fig. F.10). We find
that all of these experiments corroborate our results comparing Causal Tracing
to Rewrite Score for GPT-J on CounterFact. Considering these robustness results
alongside additional editing method experiments that we consider in Sec. 9.5 below, we note
that our main conclusions generalize across different causal localization methods, editing
methods, editing metrics, models, and datasets.

9.5 Reconciling Localization and Editing

If injecting a new fact has little to do with where an existing fact is stored in the model,
perhaps there is some other editing intervention that would be more closely related to insights
from tracing analysis. In this section, we propose a few variants of the model editing problem
that appear more and more like Causal Tracing in terms of their input, target, and objective.
Then, we repeat and extend our analysis from Sec. 9.4 for all of these editing problems.

72

9.5.1 Editing Problem Variants

We summarize the following editing problems in Fig. 9.5.

1. Error Injection. The editing problem considered in Sec. 9.4, the objective being to
maximize pθ(ofalse|s, r).

2. Tracing Reversal. We maximize pθ(onoise|s, r), aiming to change the model output from
otrue back to the output for the “original” noised input P = (snoise, r) in Causal Tracing,
onoise.

3. Fact Erasure. Knowing where a fact is stored could be more useful for erasing the fact rather
than injecting a new one. Hence, we consider erasing a fact by minimizing pθ(otrue|s, r).

4. Fact Amplification. We reinforce known facts in the model by maximizing pθ(otrue|s, r).
Even for correctly predicted points, this value is often not near 1, leaving room for it to be
increased.

5. Fact Forcing. As in Causal Tracing, this method uses a noised subject representation snoise.
We force the model to output otrue for this input by maximizing pθ(otrue|snoise, r). Though
this problem is of little practical significance, it is the most similar to Causal Tracing in its
design, since it uses the same input as Causal Tracing and matches the goal of increasing
the probability of otrue (see Sec. 9.3.2).

Note that solutions to each of these problems are evaluated according to our Rewrite Score,
Paraphrase Score, and Neighborhood Score metrics from Sec. 9.3.4. The only difference is in
the target output for the rewrite and paraphrase metrics (neighborhood is entirely identical).

9.5.2 Experiment Design and Additional Edit Methods

We use the same experimental procedure as in Sec. 9.4, except that we consider a broader set
of editing methods besides ROME. We list the four methods below:

1. ROME. The edit method from Sec. 9.4, ROME edits a single MLP layer’s down-projection
weight.

2. MEMIT. Though designed to edit multiple facts at once, when editing a single fact this
method differs from ROME only by spreading out its update over several layers rather
than one layer [129].

3. Constrained Finetuning (window size 1). We adopt a simple Adam-based optimization
approach with an ℓ∞-norm constraint, following Zhu et al. [240]. The window size of 1
indicates we apply this method at a single layer.

4. Constrained Finetuning (window size 5). The above finetuning method on five adjacent
layers.

We select these methods for their simplicity and since ROME and MEMIT are designed
specifically to edit MLP layers. Note that we report results for Causal Tracing with a window
size of five, so when we use MEMIT or constrained finetuning to edit five layers, these five
layers can exactly match the range of restored layers from Causal Tracing.

9.5.3 Experiment Results

Main Results. As in our analysis in Sec. 9.4, we report R2 values for a linear regression
model predicting the rewrite score based on (1) the choice of edit layer treated as a categorical

73

29.4 29.6

75.1 75.2

29.4 31.0
21.2 21.8

38.3 39.3 42.4 43.6

88.0 88.0 90.5 90.6

64.3 64.6
69.8 70.0

85.7 85.8
92.5 92.5

69.7 72.4
63.4 66.6

42.2 42.5
34.5 35.4

Tracing Reversal Fact Amplification Fact Erasure Fact Forcing

FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT
0

25

50

75

100

Explanatory Variable(s): Layer Layer + Tracing Effect

Tracing effects are very weakly predictive of edit success

Figure 9.6: Tracing effects are very weakly predictive of edit success across editing problems
and methods. Relative to the R2 of a regression predicting rewrite score based on the edit
layer (blue), a regression with edit layer and tracing effects (orange) improves the R2 by at
most .03 points (bolded). The choice of edit layer is a much better predictor of the rewrite
score.

variable, or (2) that variable interacted with the tracing effect. We show the results in Fig.
9.6, with R2 values for each regression above their respective bars (numbers also in Appendix
Table F.2). We find that, relative to the Layer-only regression, tracing effects explain at
most an additional 3.2% of the variance in edit success across our different editing
problems and editing methods. This is a very small effect, especially compared to R2 values
from the Layer-only regression, which explains most of the variance in the outcome (58.5% on
average across conditions in Fig. 9.6). We believe this is surprising given how the editing
problem variants are designed. It would seem that knowing where a fact is stored
should help with amplifying or erasing that fact, but our results appear to fully
disconfirm this hypothesis. Interestingly, it also appears that it makes little difference
whether we edit at one layer or five layers in order to match the number of representations
restored by Causal Tracing. Based on comparisons between finetuning methods (FT-1 and
FT-5) and between ROME and MEMIT (applied to 5 layers), editing at five layers does not
improve the alignment between tracing and editing. In addition to our robustness results
listed in Sec. 9.4.3, we also repeat our analysis using a subset of points where tracing effects
are concentrated to a small number of layers, in order to focus on points where MEMIT and
FT-5 edit all of the layers where the fact is stored. Results are nearly identical for this subset
of the data (see Appendix F.2).

One Successful Case. We see the strongest positive relationship between edit success and
tracing effects for Fact Forcing with finetuning methods. Here, we find that tracing effects
explain an additional 3% of the variance in edit success (up from 1.5% for other experiments).
This effect is statistically significant at p < 1e−4 according to an F-test1 comparing the two
models (see visualization in Appendix Fig. F.11). The result for Fact Forcing suggests that
using snoise rather than s in the model input is the cause of the positive relationship between
editing and localization. We rule out the choice of target and maximizing vs. minimizing the
target probability as possible causes based on the design of each problem variant (see Fig.
9.5): (1) the choice of target is not important since results are similar for Error Injection,
Tracing Reversal, and Fact Amplification, and (2) maximizing vs. minimizing the target

1This tests if one model explains more of the variance than another model which has only a subset of the
first’s covariates (here, tracing effect and edit layer vs. only edit layer).

74

probability is not important since results are similar for Fact Erasure and Fact Amplification.
Yet, tracing effects are still weakly informative of Fact Forcing editing if they explain only 3%
of the variance in edit success. This points to there being other deeper reasons for localization
results being unrelated to editing success.

9.6 Discussion

Does Causal Tracing tell us anything? We show that Causal Tracing is not indicative of
which layer to select for model editing. However, this does not mean that localization insights
from Causal Tracing have been useless. Causal Tracing has helped reveal the role that early-
to-mid-range MLP representations at the last subject token index play in factual association in
autoregressive language models, and ROME does perform better on average when optimizing
the last subject token representation rather than another token representation [128].2 Past work
finds that both MLP and attention layers can show large Causal Tracing effects, and additional
empirical editing experiments then demonstrate that it is preferable to edit MLP weights [128].

Why is edit success high at layers where the edited fact is not actually stored?
First, we note that information is gradually accumulated across layers in a Transformer
forward pass, as discovered by past work [170, 57, 128, 129, 58]. We suggest that it is possible
to “override” the information in layer ℓ with an edit to another layer k (where k < ℓ or k > ℓ).
Since ROME is typically effective across a large range of layers (see Fig. F.3), it appears that
ROME can override the information accrued across 5 or 10 layers of a forward pass with an
edit to a single layer outside of that range of layers. We summarize this hypothesis as follows:
Many layers could store a fact, and it happens that some do.

If this hypothesis were true, it would be surprising because one cannot arbitrarily swap
layers in a Transformer model without greatly damaging model performance [233]. That is, it
should matter where information enters the residual stream, since later layers strongly depend
on receiving the right incoming information from prior layers. We leave it to future work to
further investigate this hypothesis.

What do our results imply about using model editing to validate localization
claims? We interpret our results to suggest that Causal Tracing answers a different question
than model editing does. That is, Causal Tracing answers a question about where factual
information is carried in representations in a Transformer forward pass, and this question
turns out to be a different question than the editing question of where is best to intervene
in the Transformer in order to change the factual information it expresses. It seems critical,
then, to carefully formalize the questions that one wishes to answer before (1) validating
the results of localization via editing or (2) motivating the design of an editing method via
localization, because the conclusions that can be drawn from a particular localization method
might not be relevant for the performance of a given model editing method. This would not
imply the conclusions from the localization analysis are invalid, though. For instance, we
believe Causal Tracing reveals interesting insights about where MLP representations contain
factual information (see Figs. 9.1 and 9.2). We only wish to suggest that localization analysis
might answer a different question than the question answered by model editing.

These observations may have implications for the array of studies that validate their local-
ization analysis by manipulating a certain model behavior via an intervention on the model
component recommended by the analysis [159, 104, 15, 14, 137, 207, 36, 105, 35, 213, 23, 128].

2Although, datapoint-level regression would provide stronger evidence that tracing effects predict which
token representation is best to optimize with ROME (and rule out other confounders such as the edit layer).

75

Do model editing experiments provide additional evidence for claims about which model
components are responsible for certain behaviors? If localization and editing answer different
questions, editing experiments will not provide further evidence for localization conclusions.

9.7 Conclusion

We obtain the surprising result that model edit success is essentially unrelated to where factual
information is stored in models, as measured by Causal Tracing. Faced with this result, we
attempt to reconnect tracing-based localization with edit success by introducing four variants
of the Error Injection problem using the CounterFact dataset. We find that edit success and
tracing effects correlate best in our Fact Forcing setting. However, even in this case, tracing
effects explain only a small fraction of the variance in editing performance, while the choice
of edit layer is a much more important factor. This suggests that, counterintuitively, better
mechanistic understanding of how pretrained language models work may not always translate
to insights about how to best change their behavior.

76

10 Conclusion

This concludes the foregoing work on interpretable and controllable models. To summarize:
First, I discussed Human Evaluation of ML Explanations and work on evaluation protocols

for one-size-fits-all tests for model explanation faithfulness.
Second, I covered Natural Language Explanation Methods and describe faithfulness tests

specifically for model-based evaluation of natural language explanations.
Third, I surveyed approaches for Adding Explanation Data to Traditional Discriminative

Learning. Here, I argue that explanation data is best utilized as model inputs rather than as
model targets or a prior over model weights in the context of discriminative learning.

Fourth, I introduced new approaches for Feature Attribution Methods and Evaluation. I
suggest that, rather than using a linear attribution method on an arbitrary blackbox model,
one should preferably explain only models that sometimes see ablated inputs during training
(i.e. partly missing features), while obtaining explanations with a compute-adjustable search
method to search specifically for features that would be sufficient or necessary for a model’s
test-time prediction.

Fifth, I explored Model Editing and Belief Graphs for LMs. Since this work, model editing
has become an increasingly popular problem area, and tools for manipulating and visualizing
model beliefs will be especially important as language models develop (somewhat) coherent
world models.

Lastly, I described work on Localization and Editing of Knowledge in LMs. This conceptual
work highlights important subtleties regarding (1) localization findings’ utility for model
editing, and (2) the use of model editing to substantiate the validity of a localization claim.

In total, this thesis includes new evaluation procedures, explainability methods, approaches
to model editing and model control, and theoretical contributions to interpretability.

77

11 Published Work

Below is a list of published papers and preprints which I have authored or co-authored during
my graduate research:

2024

[73] Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effec-
tiveness of easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024. URL
https://arxiv.org/pdf/2401.06751.pdf

[4] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter
Hase, Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Founda-
tional challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024. URL https://arxiv.org/pdf/2404.09932.pdf

[122] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter
Hase, Xiaojun Xu, Yuguang Yao, Hang Li, Kush R Varshney, et al. Rethinking machine
unlearning for large language models. arXiv preprint arXiv:2402.08787, 2024. URL https:

//arxiv.org/pdf/2402.08787.pdf

2023

[148] Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from
llms? objectives for defending against extraction attacks. arXiv preprint arXiv:2309.17410,
2023. URL https://arxiv.org/pdf/2309.17410.pdf

[72] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform
editing? surprising differences in causality-based localization vs. knowledge editing in language
models. arXiv preprint arXiv:2301.04213, 2023. URL https://arxiv.org/pdf/2301.04213.pdf

[24] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer,
Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open
problems and fundamental limitations of reinforcement learning from human feedback. arXiv
preprint arXiv:2307.15217, 2023. URL https://arxiv.org/pdf/2307.15217.pdf

[176] Swarnadeep Saha, Peter Hase, and Mohit Bansal. Can language models teach weaker
agents? teacher explanations improve students via theory of mind. arXiv preprint arXiv:2306.09299,
2023. URL https://arxiv.org/pdf/2306.09299.pdf

[227] Zhuofan Ying, Peter Hase, and Mohit Bansal. Adaptive contextual perception: How
to generalize to new backgrounds and ambiguous objects. arXiv preprint arXiv:2306.05963,
2023. URL https://arxiv.org/pdf/2306.05963.pdf

2022

[174] Swarnadeep Saha, Peter Hase, Nazneen Rajani, and Mohit Bansal. Are hard examples
also harder to explain? a study with human and model-generated explanations. arXiv preprint
arXiv:2211.07517, 2022. URL https://arxiv.org/pdf/2211.07517.pdf

[226] Zhuofan Ying, Peter Hase, and Mohit Bansal. Visfis: Visual feature importance supervi-
sion with right-for-the-right-reason objectives. Advances in Neural Information Processing

78

https://arxiv.org/pdf/2401.06751.pdf
https://arxiv.org/pdf/2404.09932.pdf
https://arxiv.org/pdf/2402.08787.pdf
https://arxiv.org/pdf/2402.08787.pdf
https://arxiv.org/pdf/2309.17410.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2307.15217.pdf
https://arxiv.org/pdf/2306.09299.pdf
https://arxiv.org/pdf/2306.05963.pdf
https://arxiv.org/pdf/2211.07517.pdf

Systems, 35:17057–17072, 2022. URL https://arxiv.org/pdf/2206.11212.pdf

[175] Swarnadeep Saha, Shiyue Zhang, Peter Hase, and Mohit Bansal. Summarization
programs: Interpretable abstractive summarization with neural modular trees. arXiv preprint
arXiv:2209.10492, 2022. URL https://arxiv.org/pdf/2209.10492.pdf

[155] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-
based instruction search for prompting large language models. arXiv preprint arXiv:2203.07281,
2022. URL https://arxiv.org/pdf/2203.07281.pdf

2021

[71] Peter Hase, Harry Xie, and Mohit Bansal. The out-of-distribution problem in explainability
and search methods for feature importance explanations. In Advances in Neural Information
Processing Systems, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/

file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf

[70] Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov,
Mohit Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting,
updating, and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021. URL
https://arxiv.org/pdf/2111.13654.pdf

[222] Prateek Yadav, Peter Hase, and Mohit Bansal. INSPIRE: Incorporating diverse feature
preferences in recourse. arxiv, 2021. URL https://openreview.net/pdf?id=6yzIuqKGnq

[66] Peter Hase and Mohit Bansal. When can models learn from explanations? a formal
framework for understanding the roles of explanation data. arXiv preprint arXiv:2102.02201,
2021. URL https://arxiv.org/pdf/2102.02201.pdf

2020

[62] Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020. URL https://arxiv.org/pdf/2012.15781.pdf

[68] Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. Leakage-adjusted simulatability:
Can models generate non-trivial explanations of their behavior in natural language? In
Findings of EMNLP, 2020. URL https://arxiv.org/abs/2010.04119

[64] Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations
help users predict model behavior?, 2020. URL https://arxiv.org/pdf/2005.01831.pdf

79

https://arxiv.org/pdf/2206.11212.pdf
https://arxiv.org/pdf/2209.10492.pdf
https://arxiv.org/pdf/2203.07281.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://openreview.net/pdf?id=6yzIuqKGnq
https://arxiv.org/pdf/2102.02201.pdf
https://arxiv.org/pdf/2012.15781.pdf
https://arxiv.org/abs/2010.04119
https://arxiv.org/pdf/2005.01831.pdf

References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and
Been Kim. Sanity checks for saliency maps. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018. URL https://arxiv.org/

abs/1810.03292.

[2] David Alvarez-Melis, Hal Daumé III, Jennifer Wortman Vaughan, and Hanna Wal-
lach. Weight of evidence as a basis for human-oriented explanations. arXiv preprint
arXiv:1910.13503, 2019. URL https://arxiv.org/pdf/1910.13503.pdf.

[3] Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In
Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, NAACL-HLT 2018, 2018. doi:
10.18653/v1/n18-1197. URL https://doi.org/10.18653/v1/n18-1197.

[4] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024. URL https://arxiv.org/pdf/2404.09932.pdf.

[5] Leila Arras, Ahmed Osman, Klaus-Robert Müller, and Wojciech Samek. Evaluating
recurrent neural network explanations. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 113–126,
Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/
v1/W19-4813. URL https://www.aclweb.org/anthology/W19-4813.

[6] Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and Sunita Sarawagi. Learning
from rules generalizing labeled exemplars. In ICLR 2020, 2020. URL https://arxiv.

org/pdf/2004.06025.pdf.

[7] Lei Jimmy Ba, Kevin Swersky, Sanja Fidler, and Ruslan Salakhutdinov. Predicting
deep zero-shot convolutional neural networks using textual descriptions. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-
13, 2015, pages 4247–4255. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.483.
URL https://doi.org/10.1109/ICCV.2015.483.

[8] Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching
the blanks: Distributional similarity for relation learning. In ACL, pages 2895–2905,
Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1279. URL https://www.aclweb.org/anthology/P19-1279.

[9] Seojin Bang, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing. Explaining a black-
box using Deep Variational Information Bottleneck Approach. arXiv:1902.06918 [cs,
stat], abs/1902.06918, February 2019. URL http://arxiv.org/abs/1902.06918. arXiv:
1902.06918.

[10] Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay. Deriving machine attention from
human rationales. In EMNLP, pages 1903–1913, Brussels, Belgium, October-November

80

https://arxiv.org/abs/1810.03292
https://arxiv.org/abs/1810.03292
https://arxiv.org/pdf/1910.13503.pdf
https://doi.org/10.18653/v1/n18-1197
https://arxiv.org/pdf/2404.09932.pdf
https://www.aclweb.org/anthology/W19-4813
https://arxiv.org/pdf/2004.06025.pdf
https://arxiv.org/pdf/2004.06025.pdf
https://doi.org/10.1109/ICCV.2015.483
https://www.aclweb.org/anthology/P19-1279
http://arxiv.org/abs/1902.06918

2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1216. URL
https://www.aclweb.org/anthology/D18-1216.

[11] Ricardo Baptista and Matthias Poloczek. Bayesian optimization of combinatorial
structures. In International Conference on Machine Learning, pages 462–471. PMLR,
2018. URL http://proceedings.mlr.press/v80/baptista18a/baptista18a.pdf.

[12] Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with
differentiable binary variables. In ACL 2019, pages 2963–2977, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1284. URL
https://www.aclweb.org/anthology/P19-1284.

[13] Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with
differentiable binary variables. In ACL 2019, pages 2963–2977, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1284. URL
https://www.aclweb.org/anthology/P19-1284.

[14] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting
a deep generative model. In European conference on computer vision, pages 351–369.
Springer, 2020. URL https://arxiv.org/pdf/2007.15646.pdf.

[15] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio
Torralba. Understanding the role of individual units in a deep neural network. Proceedings
of the National Academy of Sciences, 117(48):30071–30078, 2020. URL https://www.

pnas.org/doi/pdf/10.1073/pnas.1907375117.

[16] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for struc-
tured prediction energy networks. In Doina Precup and Yee Whye Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 429–439. PMLR, 2017. URL http://proceedings.mlr.press/v70/

belanger17a.html.

[17] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer. CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

[18] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages
610–623, 2021. URL https://dl.acm.org/doi/10.1145/3442188.3445922.

[19] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda
Viégas, and Martin Wattenberg. An interpretability illusion for bert. arXiv preprint
arXiv:2104.07143, 2021. URL https://arxiv.org/pdf/2104.07143.pdf.

[20] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A
large annotated corpus for learning natural language inference. In EMNLP 2015, 2015.
URL https://arxiv.org/abs/1508.05326.

[21] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

81

https://www.aclweb.org/anthology/D18-1216
http://proceedings.mlr.press/v80/baptista18a/baptista18a.pdf
https://www.aclweb.org/anthology/P19-1284
https://www.aclweb.org/anthology/P19-1284
https://arxiv.org/pdf/2007.15646.pdf
https://www.pnas.org/doi/pdf/10.1073/pnas.1907375117
https://www.pnas.org/doi/pdf/10.1073/pnas.1907375117
http://proceedings.mlr.press/v70/belanger17a.html
http://proceedings.mlr.press/v70/belanger17a.html
https://arxiv.org/abs/2004.05150
https://dl.acm.org/doi/10.1145/3442188.3445922
https://arxiv.org/pdf/2104.07143.pdf
https://arxiv.org/abs/1508.05326

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS, 2020. URL https:

//arxiv.org/abs/2005.14165.

[22] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-snli:
Natural language inference with natural language explanations. In NeurIPS 2018, 2018.
URL https://arxiv.org/pdf/1812.01193.pdf.

[23] Stephen Casper, Shlomi Hod, Daniel Filan, Cody Wild, Andrew Critch, and Stuart
Russell. Graphical clusterability and local specialization in deep neural networks. In
ICLR 2022 Workshop on PAIR, 2022. URL https://arxiv.org/pdf/2110.08058v2.pdf.

[24] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer,
Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al.
Open problems and fundamental limitations of reinforcement learning from human
feedback. arXiv preprint arXiv:2307.15217, 2023. URL https://arxiv.org/pdf/2307.

15217.pdf.

[25] Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay, and
Devi Parikh. Do explanations make vqa models more predictable to a human? In
EMNLP, pages 1036–1042, Brussels, Belgium, October-November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1128. URL https://arxiv.org/pdf/

1810.12366.pdf.

[26] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining
image classifiers by counterfactual generation. In ICLR, 2019. URL https://arxiv.org/

pdf/1807.08024.pdf.

[27] Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia
Rudin. This Looks Like That: Deep Learning for Interpretable Image Recognition.
In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, June 2019. URL http://arxiv.org/abs/1806.10574.

[28] Hanjie Chen and Yangfeng Ji. Learning variational word masks to improve the inter-
pretability of neural text classifiers. In EMNLP, pages 4236–4251, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.347.
URL https://www.aclweb.org/anthology/2020.emnlp-main.347.

[29] Pattarawat Chormai, Jan Herrmann, Klaus-Robert Müller, and Grégoire Montavon.
Disentangled explanations of neural network predictions by finding relevant subspaces.
arXiv preprint arXiv:2212.14855, 2022. URL https://arxiv.org/pdf/2212.14855.pdf.

[30] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. arXiv
preprint arXiv:1502.02127, 2015. URL https://arxiv.org/pdf/1502.02127.pdf.

[31] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins,
and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no
questions. In Proceedings of the 2019 Conference of the North American Chapter of

82

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/1812.01193.pdf
https://arxiv.org/pdf/2110.08058v2.pdf
https://arxiv.org/pdf/2307.15217.pdf
https://arxiv.org/pdf/2307.15217.pdf
https://arxiv.org/pdf/1810.12366.pdf
https://arxiv.org/pdf/1810.12366.pdf
https://arxiv.org/pdf/1807.08024.pdf
https://arxiv.org/pdf/1807.08024.pdf
http://arxiv.org/abs/1806.10574
https://www.aclweb.org/anthology/2020.emnlp-main.347
https://arxiv.org/pdf/2212.14855.pdf
https://arxiv.org/pdf/1502.02127.pdf

the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 2924–2936, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL https:

//www.aclweb.org/anthology/N19-1300.

[32] John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John
DeNero, Pieter Abbeel, and Sergey Levine. Guiding policies with language via meta-
learning. In ICLR 2019, 2019. URL https://openreview.net/forum?id=HkgSEnA5KQ.

[33] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, 1988.
ISBN 9780805802832.

[34] Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets
modular? inspecting functional modularity through differentiable weight masks. arXiv
preprint arXiv:2010.02066, 2020. URL https://arxiv.org/pdf/2010.02066.pdf.

[35] Audrey Cui, Ali Jahanian, Agata Lapedriza, Antonio Torralba, Shahin Mahdizadehagh-
dam, Rohit Kumar, and David Bau. Local relighting of real scenes. arXiv preprint
arXiv:2207.02774, 2022. URL https://arxiv.org/pdf/2207.02774.pdf.

[36] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Knowledge neurons in
pretrained transformers. In ACL, 2022. URL https://arxiv.org/pdf/2104.08696.pdf.

[37] Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz, and Ivan Titov. How do decisions
emerge across layers in neural models? interpretation with differentiable masking. In
EMNLP, pages 3243–3255, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.262. URL https://www.aclweb.org/

anthology/2020.emnlp-main.262.

[38] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language
models. In EMNLP, pages 6491–6506. Association for Computational Linguistics,
November 2021. URL https://aclanthology.org/2021.emnlp-main.522.

[39] Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and Ivan Titov. Sparse interventions in
language models with differentiable masking. In EMNLP BlackboxNLP Workshop, 2021.
URL https://arxiv.org/pdf/2112.06837.pdf.

[40] Daniel Dennett. Do animals have beliefs? Comparative approaches to cognitive science,
111, 1995. URL https://dl.tufts.edu/concern/pdfs/rj430g708.

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In ACL 2019, 2019. URL
https://arxiv.org/pdf/1810.04805.pdf.

[42] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong,
Richard Socher, and Byron C. Wallace. Eraser: A benchmark to evaluate rationalized
nlp models. In ACL 2020, volume abs/1911.03429, 2020. URL https://arxiv.org/pdf/

1911.03429.pdf.

[43] Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob
Eisenstein, and William W Cohen. Time-aware language models as temporal knowledge
bases. arXiv preprint arXiv:2106.15110, 2021. URL https://arxiv.org/pdf/2106.15110.

pdf.

83

https://www.aclweb.org/anthology/N19-1300
https://www.aclweb.org/anthology/N19-1300
https://openreview.net/forum?id=HkgSEnA5KQ
https://arxiv.org/pdf/2010.02066.pdf
https://arxiv.org/pdf/2207.02774.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.262
https://www.aclweb.org/anthology/2020.emnlp-main.262
https://aclanthology.org/2021.emnlp-main.522
https://arxiv.org/pdf/2112.06837.pdf
https://dl.tufts.edu/concern/pdfs/rj430g708
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1911.03429.pdf
https://arxiv.org/pdf/1911.03429.pdf
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2106.15110.pdf

[44] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah Smith. Fine-Tuning Pretrained Language Models: Weight Initializations, Data
Orders, and Early Stopping. arXiv:2002.06305 [cs], February 2020. URL http://arxiv.

org/abs/2002.06305. arXiv: 2002.06305.

[45] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah A. Smith. Fine-tuning pretrained language models: Weight initializations, data
orders, and early stopping. CoRR, abs/2002.06305, 2020. URL https://arxiv.org/abs/

2002.06305.

[46] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable Machine
Learning. arXiv:1702.08608 [cs, stat], February 2017. URL http://arxiv.org/abs/1702.

08608. arXiv: 1702.08608.

[47] Qingfeng Du and Jincheng Xu. Model-agnostic local explanations with genetic algorithms
for text classification. In The 33rd International Conference on Software Engineering
& Knowledge Engineering, 2021. URL https://ksiresearch.org/seke/seke21paper/

paper040.pdf.

[48] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

[49] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-box adver-
sarial examples for text classification. In ACL, pages 31–36, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2006. URL
https://www.aclweb.org/anthology/P18-2006.

[50] Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. CRC press,
1994.

[51] Upol Ehsan, Samir Passi, Q Vera Liao, Larry Chan, I Lee, Michael Muller, Mark O Riedl,
et al. The who in explainable ai: How ai background shapes perceptions of ai explanations.
arXiv preprint arXiv:2107.13509, 2021. URL https://arxiv.org/pdf/2107.13509.pdf.

[52] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy,
Hinrich Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained
language models. Transactions of the Association for Computational Linguistics, 9:
1012–1031, 2021. URL https://arxiv.org/pdf/2102.01017.pdf.

[53] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma,
Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack
Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework
for transformer circuits. Transformer Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

[54] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by mean-
ingful perturbation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3429–3437, 2017. URL https://arxiv.org/pdf/1704.03296.pdf.

84

http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
https://ksiresearch.org/seke/seke21paper/paper040.pdf
https://ksiresearch.org/seke/seke21paper/paper040.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.aclweb.org/anthology/P18-2006
https://arxiv.org/pdf/2107.13509.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/1704.03296.pdf

[55] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith.
Realtoxicityprompts: Evaluating neural toxic degeneration in language models. In
Findings of EMNLP, 2020. URL https://arxiv.org/pdf/2009.11462.pdf.

[56] Atticus Geiger, Chris Potts, and Thomas Icard. Causal abstraction for faithful model
interpretation. arXiv preprint arXiv:2301.04709, 2023.

[57] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward
layers are key-value memories. In EMNLP, 2021. URL https://arxiv.org/pdf/2012.

14913.pdf.

[58] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-
forward layers build predictions by promoting concepts in the vocabulary space. arXiv
preprint arXiv:2203.14680, 2022. URL https://arxiv.org/pdf/2203.14680.pdf.

[59] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic
concept-based explanations. Advances in Neural Information Processing Systems, 32,
2019. URL https://arxiv.org/pdf/1902.03129.pdf.

[60] Anastasia Giannakidou and Alda Mari. A linguistic framework for knowledge, belief,
and veridicality judgement. HAL, 2020. URL https://halshs.archives-ouvertes.fr/

halshs-03088697/document.

[61] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana
Kagal. Explaining Explanations: An Overview of Interpretability of Machine Learning.
The 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA
2018), May 2018. URL http://arxiv.org/abs/1806.00069.

[62] Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong.
Fastif: Scalable influence functions for efficient model interpretation and debugging.
arXiv preprint arXiv:2012.15781, 2020. URL https://arxiv.org/pdf/2012.15781.pdf.

[63] Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang,
and Christopher Ré. Training classifiers with natural language explanations. In ACL,
2018. URL https://pubmed.ncbi.nlm.nih.gov/31130772/.

[64] Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations
help users predict model behavior?, 2020. URL https://arxiv.org/pdf/2005.01831.pdf.

[65] Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations
help users predict model behavior? In ACL 2020, 2020. URL https://arxiv.org/pdf/

2005.01831.pdf.

[66] Peter Hase and Mohit Bansal. When can models learn from explanations? a formal frame-
work for understanding the roles of explanation data. arXiv preprint arXiv:2102.02201,
2021. URL https://arxiv.org/pdf/2102.02201.pdf.

[67] Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin. Interpretable Image Recogni-
tion with Hierarchical Prototypes. In Proceedings of the Seventh AAAI Conference on
Human Computation and Crowdsourcing (HCOMP-19), pages 32–40, June 2019. URL
http://arxiv.org/abs/1906.10651.

85

https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2012.14913.pdf
https://arxiv.org/pdf/2012.14913.pdf
https://arxiv.org/pdf/2203.14680.pdf
https://arxiv.org/pdf/1902.03129.pdf
https://halshs.archives-ouvertes.fr/halshs-03088697/document
https://halshs.archives-ouvertes.fr/halshs-03088697/document
http://arxiv.org/abs/1806.00069
https://arxiv.org/pdf/2012.15781.pdf
https://pubmed.ncbi.nlm.nih.gov/31130772/
https://arxiv.org/pdf/2005.01831.pdf
https://arxiv.org/pdf/2005.01831.pdf
https://arxiv.org/pdf/2005.01831.pdf
https://arxiv.org/pdf/2102.02201.pdf
http://arxiv.org/abs/1906.10651

[68] Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. Leakage-adjusted simulatability:
Can models generate non-trivial explanations of their behavior in natural language? In
Findings of EMNLP, 2020. URL https://arxiv.org/abs/2010.04119.

[69] Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. Leakage-adjusted simulatability:
Can models generate non-trivial explanations of their behavior in natural language?,
2020. URL https://arxiv.org/pdf/2010.04119.pdf.

[70] Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov,
Mohit Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for
detecting, updating, and visualizing model beliefs. arXiv preprint arXiv:2111.13654,
2021. URL https://arxiv.org/pdf/2111.13654.pdf.

[71] Peter Hase, Harry Xie, and Mohit Bansal. The out-of-distribution problem in explain-
ability and search methods for feature importance explanations. In Advances in Neural
Information Processing Systems, 2021. URL https://proceedings.neurips.cc/paper_

files/paper/2021/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf.

[72] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization
inform editing? surprising differences in causality-based localization vs. knowledge
editing in language models. arXiv preprint arXiv:2301.04213, 2023. URL https:

//arxiv.org/pdf/2301.04213.pdf.

[73] Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effec-
tiveness of easy training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024.
URL https://arxiv.org/pdf/2401.06751.pdf.

[74] Johannes Haug, Stefan Zürn, Peter El-Jiz, and Gjergji Kasneci. On baselines for local
feature attributions. In AAAI, 2021. URL https://arxiv.org/pdf/2101.00905.pdf.

[75] Benjamin Heinzerling and Kentaro Inui. Language models as knowledge bases: On entity
representations, storage capacity, and paraphrased queries. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, pages 1772–1791, Online, April 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.eacl-main.153.

[76] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
and Trevor Darrell. Generating visual explanations. In ECCV 2016, 2016. URL
https://arxiv.org/pdf/1603.08507.pdf.

[77] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding
visual explanations. In ECCV 2018, 2018. URL https://arxiv.org/pdf/1807.09685.pdf.

[78] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba,
and Jacob Andreas. Natural language descriptions of deep visual features. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/

pdf?id=NudBMY-tzDr.

[79] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In
EMNLP, 2019. URL https://arxiv.org/pdf/1909.03368.pdf.

86

https://arxiv.org/abs/2010.04119
https://arxiv.org/pdf/2010.04119.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2401.06751.pdf
https://arxiv.org/pdf/2101.00905.pdf
https://aclanthology.org/2021.eacl-main.153
https://arxiv.org/pdf/1603.08507.pdf
https://arxiv.org/pdf/1807.09685.pdf
https://openreview.net/pdf?id=NudBMY-tzDr
https://openreview.net/pdf?id=NudBMY-tzDr
https://arxiv.org/pdf/1909.03368.pdf

[80] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark
for interpretability methods in deep neural networks. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, 2019. URL https:

//arxiv.org/abs/1806.10758.

[81] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon
Kim, Sanjiv Kumar, and Cho-Jui Hsieh. Evaluations and methods for explanation
through robustness analysis. arXiv preprint arXiv:2006.00442, 2020. URL https:

//arxiv.org/pdf/2006.00442.pdf.

[82] Amanda Hutton, Alexander Liu, and Cheryl Martin. Crowdsourcing Evaluations of
Classifier Interpretability. In AAAI Spring Symposium: Wisdom of the Crowd, pages
21–26, 2012.

[83] Alon Jacovi and Yoav Goldberg. Aligning faithful interpretations with their social
attribution. arXiv preprint arXiv:2006.01067, 2020. URL https://arxiv.org/abs/2006.

01067.

[84] Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How
should we define and evaluate faithfulness? In ACL 2020, 2020. URL https://www.

aclweb.org/anthology/2020.acl-main.386.pdf.

[85] Alon Jacovi and Yoav Goldberg. Aligning faithful interpretations with their social
attribution. Transactions of the Association for Computational Linguistics, 9:294–310,
2021. URL https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00367/98620/

Aligning.

[86] Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. Formalizing trust in
artificial intelligence: Prerequisites, causes and goals of human trust in ai. In Proceedings
of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’21, page 624–635, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445923. URL https://doi.org/10.1145/

3442188.3445923.

[87] Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
3543–3556, 2019.

[88] Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and Byron C. Wallace. Learning to
faithfully rationalize by construction. In ACL 2020, pages 4459–4473, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.409. URL
https://www.aclweb.org/anthology/2020.acl-main.409.

[89] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In ICLR, 2016. URL https://arxiv.org/pdf/1611.01144.pdf.

[90] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. Feature relevance quantification
in explainable ai: A causal problem. In International Conference on Artificial Intelligence
and Statistics, pages 2907–2916. PMLR, 2020. URL https://arxiv.org/pdf/1910.13413.

pdf.

87

https://arxiv.org/abs/1806.10758
https://arxiv.org/abs/1806.10758
https://arxiv.org/pdf/2006.00442.pdf
https://arxiv.org/pdf/2006.00442.pdf
https://arxiv.org/abs/2006.01067
https://arxiv.org/abs/2006.01067
https://www.aclweb.org/anthology/2020.acl-main.386.pdf
https://www.aclweb.org/anthology/2020.acl-main.386.pdf
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00367/98620/Aligning
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00367/98620/Aligning
https://doi.org/10.1145/3442188.3445923
https://doi.org/10.1145/3442188.3445923
https://www.aclweb.org/anthology/2020.acl-main.409
https://arxiv.org/pdf/1611.01144.pdf
https://arxiv.org/pdf/1910.13413.pdf
https://arxiv.org/pdf/1910.13413.pdf

[91] Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath.
Have we learned to explain?: How interpretability methods can learn to encode predic-
tions in their interpretations. In International Conference on Artificial Intelligence and
Statistics, pages 1459–1467. PMLR, 2021. URL https://arxiv.org/pdf/2103.01890.pdf.

[92] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what
language models know? Transactions of the Association for Computational Linguistics,
8:423–438, 2020.

[93] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 2017. URL https://arxiv.org/pdf/1702.08734.pdf.

[94] Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, and Joydeep Ghosh. xGEMs: Generating
Examplars to Explain Black-Box Models. arXiv:1806.08867 [cs, stat], June 2018. URL
http://arxiv.org/abs/1806.08867. arXiv: 1806.08867.

[95] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain
question answering. In EMNLP, pages 6769–6781, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https:

//www.aclweb.org/anthology/2020.emnlp-main.550.

[96] Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and Peter Clark. Beliefbank: Adding
memory to a pre-trained language model for a systematic notion of belief. arXiv preprint
arXiv:2109.14723, 2021. URL https://arxiv.org/pdf/2109.14723.pdf.

[97] Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth.
Looking beyond the surface: A challenge set for reading comprehension over multiple
sentences. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 252–262, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1023. URL https://www.aclweb.org/

anthology/N18-1023.

[98] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, and Rory sayres. Interpretability beyond feature attribution: Quantitative testing
with concept activation vectors (TCAV). In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 2668–2677. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/kim18d.html.

[99] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, and Rory Sayres. Interpretability Beyond Feature Attribution: Quantitative
Testing with Concept Activation Vectors (TCAV). In Proceedings of the 35th Interna-
tional Conference on Machine Learning, pages 2668–2677. PMLR, June 2018. URL
http://arxiv.org/abs/1711.11279. arXiv: 1711.11279.

[100] Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John F. Canny, and Zeynep Akata.
Textual explanations for self-driving vehicles. In ECCV 2018, 2018. URL https:

//arxiv.org/pdf/1807.11546.pdf.

88

https://arxiv.org/pdf/2103.01890.pdf
https://arxiv.org/pdf/1702.08734.pdf
http://arxiv.org/abs/1806.08867
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://arxiv.org/pdf/2109.14723.pdf
https://www.aclweb.org/anthology/N18-1023
https://www.aclweb.org/anthology/N18-1023
https://proceedings.mlr.press/v80/kim18d.html
http://arxiv.org/abs/1711.11279
https://arxiv.org/pdf/1807.11546.pdf
https://arxiv.org/pdf/1807.11546.pdf

[101] Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon. Interpretation of NLP models
through input marginalization. In EMNLP, pages 3154–3167, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.255.
URL https://www.aclweb.org/anthology/2020.emnlp-main.255.

[102] Sawan Kumar and Partha Talukdar. Nile : Natural language inference with faithful
natural language explanations. In ACL 2020, 2020. URL https://arxiv.org/abs/2005.

12116.

[103] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and
customizable explanations of black box models. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 131–138, 2019. URL https://papers.nips.

cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

[104] Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene,
and Marco Baroni. The emergence of number and syntax units in lstm language models.
In NAACL-HLT, 2019. URL https://arxiv.org/pdf/1903.07435.pdf.

[105] Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito, Marco Marelli, Marco Baroni,
and Stanislas Dehaene. Mechanisms for handling nested dependencies in neural-network
language models and humans. Cognition, 213:104699, 04 2021. doi: 10.1016/j.cognition.
2021.104699. URL https://arxiv.org/ftp/arxiv/papers/2006/2006.11098.pdf.

[106] Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson,
Michael Henry Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and
Felix Hill. Can language models learn from explanations in context? arXiv preprint
arXiv:2204.02329, 2022. URL https://arxiv.org/pdf/2204.02329.pdf.

[107] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent co-
operation and the emergence of (natural) language. In ICLR 2017, 2017. URL
https://arxiv.org/pdf/1612.07182.pdf.

[108] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication
meets natural language: Synergies between functional and structural language learning.
In ACL 2020, pages 7663–7674. Association for Computational Linguistics, 2020. URL
https://www.aclweb.org/anthology/2020.acl-main.685/.

[109] Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam
Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Sebastian Ruder,
Dani Yogatama, et al. Mind the gap: Assessing temporal generalization in neural
language models. In NeurIPS, 2021. URL https://arxiv.org/pdf/2102.01951.pdf.

[110] Eric Lehman, Jay DeYoung, Regina Barzilay, and Byron C. Wallace. Inferring which
medical treatments work from reports of clinical trials. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 3705–3717,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1371. URL https://www.aclweb.org/anthology/N19-1371.

[111] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extrac-
tion via reading comprehension. In Proceedings of the 21st Conference on Computational

89

https://www.aclweb.org/anthology/2020.emnlp-main.255
https://arxiv.org/abs/2005.12116
https://arxiv.org/abs/2005.12116
https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://arxiv.org/pdf/1903.07435.pdf
https://arxiv.org/ftp/arxiv/papers/2006/2006.11098.pdf
https://arxiv.org/pdf/2204.02329.pdf
https://arxiv.org/pdf/1612.07182.pdf
https://www.aclweb.org/anthology/2020.acl-main.685/
https://arxiv.org/pdf/2102.01951.pdf
https://www.aclweb.org/anthology/N19-1371

Natural Language Learning (CoNLL 2017), pages 333–342, Vancouver, Canada, August
2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL
https://aclanthology.org/K17-1034.

[112] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, NeurIPS, 2020. URL https://arxiv.org/abs/2005.11401.

[113] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding
neural models in nlp. arXiv preprint arXiv:1506.01066, 2015. URL https://arxiv.org/

pdf/1506.01066.pdf.

[114] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and Understanding
Neural Models in NLP. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 681–691. Association for Computational Linguistics, June 2016. doi:
10.18653/v1/N16-1082. URL https://www.aclweb.org/anthology/N16-1082.

[115] Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through
representation erasure. arXiv preprint arXiv:1612.08220, 2016. URL https://arxiv.

org/pdf/1612.08220.pdf.

[116] Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
Inference-time intervention: Eliciting truthful answers from a language model. arXiv
preprint arXiv:2306.03341, 2023.

[117] Weixin Liang, James Zou, and Zhou Yu. ALICE: active learning with contrastive
natural language explanations. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang
Liu, editors, EMNLP, pages 4380–4391. Association for Computational Linguistics, 2020.
URL https://www.aclweb.org/anthology/2020.emnlp-main.355/.

[118] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models
mimic human falsehoods. arXiv preprint arXiv:2109.07958, 2021. URL https://arxiv.

org/pdf/2109.07958.pdf.

[119] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by
rationale generation: Learning to solve and explain algebraic word problems. In ACL
2017, 2017. URL https://arxiv.org/pdf/1705.04146.pdf.

[120] Zachary C. Lipton. The Mythos of Model Interpretability. 2016 ICML Workshop on
Human Interpretability in Machine Learning, June 2016. URL http://arxiv.org/abs/

1606.03490.

[121] Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang. Can small and synthetic
benchmarks drive modeling innovation? a retrospective study of question answering
modeling approaches. CoRR, 2021. URL https://arxiv.org/pdf/2102.01065.pdf.

[122] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase,
Xiaojun Xu, Yuguang Yao, Hang Li, Kush R Varshney, et al. Rethinking machine
unlearning for large language models. arXiv preprint arXiv:2402.08787, 2024. URL
https://arxiv.org/pdf/2402.08787.pdf.

90

https://aclanthology.org/K17-1034
https://arxiv.org/abs/2005.11401
https://arxiv.org/pdf/1506.01066.pdf
https://arxiv.org/pdf/1506.01066.pdf
https://www.aclweb.org/anthology/N16-1082
https://arxiv.org/pdf/1612.08220.pdf
https://arxiv.org/pdf/1612.08220.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.355/
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/1705.04146.pdf
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://arxiv.org/pdf/2102.01065.pdf
https://arxiv.org/pdf/2402.08787.pdf

[123] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019. URL https://arxiv.

org/pdf/1907.11692.pdf.

[124] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR,
2019. URL https://arxiv.org/pdf/1711.05101.pdf.

[125] Charles Lovering, Rohan Jha, Tal Linzen, and Ellie Pavlick. Predicting in-
ductive biases of pre-trained models, 2021. URL https://openreview.net/pdf/

5f8e7508b216ea50a36e7f4584e4e6d8953917be.pdf.

[126] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 4765–4774, 2017. URL http://papers.nips.cc/paper/

7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[127] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:
A continuous relaxation of discrete random variables. In ICLR 2017, 2017. URL
https://arxiv.org/abs/1611.00712.

[128] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing
factual knowledge in gpt. In NeurIPS 2022, 2022. URL https://arxiv.org/pdf/2202.

05262.pdf.

[129] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau.
Mass-editing memory in a transformer. arXiv preprint arXiv:2210.07229, 2022. URL
https://arxiv.org/pdf/2210.07229.pdf.

[130] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In arXiv preprint arXiv:1301.3781, 2013. URL
https://arxiv.org/pdf/1301.3781.pdf.

[131] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif.
Intell., 267:1–38, 2019. doi: 10.1016/j.artint.2018.07.007. URL https://doi.org/10.

1016/j.artint.2018.07.007.

[132] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning.
Fast model editing at scale. arXiv preprint arXiv:2110.11309, 2021. URL https:

//arxiv.org/pdf/2110.11309.pdf.

[133] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning,
pages 15817–15831. PMLR, 2022. URL https://arxiv.org/pdf/2206.06520.pdf.

[134] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence, 41(8):1979–1993, 2018. URL
https://arxiv.org/pdf/1704.03976.pdf.

91

https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://openreview.net/pdf/5f8e7508b216ea50a36e7f4584e4e6d8953917be.pdf
https://openreview.net/pdf/5f8e7508b216ea50a36e7f4584e4e6d8953917be.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://arxiv.org/abs/1611.00712
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2210.07229.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/1704.03976.pdf

[135] Jose G Moreno-Torres, Troy Raeder, Roćıo Alaiz-Rodŕıguez, Nitesh V Chawla, and Fran-
cisco Herrera. A unifying view on dataset shift in classification. Pattern recognition, 45(1):
521–530, 2012. URL https://rtg.cis.upenn.edu/cis700-2019/papers/dataset-shift/

dataset-shift-terminology.pdf.

[136] Ramaravind Kommiya Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine
learning classifiers through diverse counterfactual explanations. In Mireille Hildebrandt,
Carlos Castillo, Elisa Celis, Salvatore Ruggieri, Linnet Taylor, and Gabriela Zanfir-
Fortuna, editors, FAT* ’20: Conference on Fairness, Accountability, and Transparency,
pages 607–617. ACM, 2020. doi: 10.1145/3351095.3372850. URL https://doi.org/10.

1145/3351095.3372850.

[137] Jesse Mu and Jacob Andreas. Compositional explanations of neurons. Advances in Neural
Information Processing Systems, 33:17153–17163, 2020. URL https://proceedings.

neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf.

[138] Shikhar Murty, Pang Wei Koh, and Percy Liang. Expbert: Representation engineering
with natural language explanations. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault, editors, ACL, pages 2106–2113. Association for Computational
Linguistics, 2020. URL https://www.aclweb.org/anthology/2020.acl-main.190/.

[139] Sharan Narang, Colin Raffel, Katherine J. Lee, Adam Roberts, Noah Fiedel, and
Karishma Malkan. WT5?! training text-to-text models to explain their predictions.
ArXiv, abs/2004.14546, 2020. URL https://arxiv.org/pdf/2004.14546.pdf.

[140] Albert Newen and Tobias Starzak. How to ascribe beliefs to animals. Mind & Language,
2020. URL https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302.

[141] Dong Nguyen. Comparing Automatic and Human Evaluation of Local Explanations
for Text Classification. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1069–1078, June 2018. doi: 10.18653/v1/N18-1097.
URL https://www.aclweb.org/anthology/N18-1097.pdf.

[142] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather-
ine Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill,
2018. doi: 10.23915/distill.00010. https://distill.pub/2018/building-blocks.

[143] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classi-
fication using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing - EMNLP ’02, volume 10, pages
79–86. Association for Computational Linguistics, 2002. doi: 10.3115/1118693.1118704.
URL http://portal.acm.org/citation.cfm?doid=1118693.1118704.

[144] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In ACL 2002, 2002. URL https:

//www.aclweb.org/anthology/P02-1040.pdf.

[145] Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, and Luke
Zettlemoyer. An information bottleneck approach for controlling conciseness in rationale
extraction. In Proceedings of the 2020 Conference on Empirical Methods in Natural

92

https://rtg.cis.upenn.edu/cis700-2019/papers/dataset-shift/dataset-shift-terminology.pdf
https://rtg.cis.upenn.edu/cis700-2019/papers/dataset-shift/dataset-shift-terminology.pdf
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
https://proceedings.neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://www.aclweb.org/anthology/2020.acl-main.190/
https://arxiv.org/pdf/2004.14546.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://www.aclweb.org/anthology/N18-1097.pdf
http://portal.acm.org/citation.cfm?doid=1118693.1118704
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf

Language Processing (EMNLP), pages 1938–1952, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.153. URL https:

//www.aclweb.org/anthology/2020.emnlp-main.153.

[146] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71,
2019. URL https://www.sciencedirect.com/science/article/pii/S0893608019300231.

[147] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele,
Trevor Darrell, and Marcus Rohrbach. Multimodal explanations: Justifying decisions
and pointing to the evidence. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8779–8788, 2018. URL https://ieeexplore.ieee.org/

document/8579013/.

[148] Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted
from llms? objectives for defending against extraction attacks. arXiv preprint
arXiv:2309.17410, 2023. URL https://arxiv.org/pdf/2309.17410.pdf.

[149] Ellie Pavlick and Tom Kwiatkowski. Inherent disagreements in human textual inferences.
Transactions of the Association for Computational Linguistics, 7:677–694, 2019. doi:
10.1162/tacl\ a\ 00293. URL https://doi.org/10.1162/tacl_a_00293.

[150] Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3(0):96–146,
2009. ISSN 1935-7516. doi: 10.1214/09-SS057. URL http://projecteuclid.org/euclid.

ssu/1255440554.

[151] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/D19-1250.

[152] Marc Pirlot. General local search methods. European journal of operational research,
92(3):493–511, 1996.

[153] John Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Adv. Large Margin Classif., 10, 06 2000.

[154] Matt Post. A call for clarity in reporting bleu scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, 2018.

[155] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free,
edit-based instruction search for prompting large language models. arXiv preprint
arXiv:2203.07281, 2022. URL https://arxiv.org/pdf/2203.07281.pdf.

[156] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance of
hyperparameters of machine learning algorithms. J. Mach. Learn. Res., 20(53):1–32,
2019. URL https://arxiv.org/pdf/1802.09596.pdf.

[157] Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares, Michael Collins, Zachary C.
Lipton, Graham Neubig, and William W. Cohen. Evaluating explanations: How much

93

https://www.aclweb.org/anthology/2020.emnlp-main.153
https://www.aclweb.org/anthology/2020.emnlp-main.153
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://ieeexplore.ieee.org/document/8579013/
https://ieeexplore.ieee.org/document/8579013/
https://arxiv.org/pdf/2309.17410.pdf
https://doi.org/10.1162/tacl_a_00293
http://projecteuclid.org/euclid.ssu/1255440554
http://projecteuclid.org/euclid.ssu/1255440554
https://aclanthology.org/D19-1250
https://arxiv.org/pdf/2203.07281.pdf
https://arxiv.org/pdf/1802.09596.pdf

do explanations from the teacher aid students? TACL, abs/2012.00893, 2021. URL
https://arxiv.org/abs/2012.00893.

[158] Luyu Qiu, Yi Yang, Caleb Chen Cao, Jing Liu, Yueyuan Zheng, Hilary Hei Ting Ngai,
Janet Hsiao, and Lei Chen. Resisting out-of-distribution data problem in perturbation
of xai. arXiv preprint arXiv:2107.14000, 2021.

[159] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and
discovering sentiment. arXiv preprint arXiv:1704.01444, 2017. URL https://arxiv.

org/pdf/1704.01444.pdf.

[160] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. In OpenAI Technical Report,
2019. URL https://cdn.openai.com/better-language-models/language_models_are_

unsupervised_multitask_learners.pdf.

[161] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019. URL https://d4mucfpksywv.cloudfront.net/better-language-models/language_

models_are_unsupervised_multitask_learners.pdf.

[162] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. ArXiv, abs/1910.10683, 2019. URL
https://arxiv.org/pdf/1910.10683.pdf.

[163] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain
yourself! leveraging language models for commonsense reasoning. In ACL 2019, 2019.
URL https://arxiv.org/pdf/1906.02361.pdf.

[164] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In EMNLP-IJCNLP, pages 3982–3992, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL
https://www.aclweb.org/anthology/D19-1410.

[165] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. Knowledge Discovery and Data Mining
(KDD), February 2016. URL http://arxiv.org/abs/1602.04938.

[166] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. In AAAI 2018, 2018. URL https://www.aaai.org/ocs/

index.php/AAAI/AAAI18/paper/view/16982.

[167] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. In AAAI Conference on Artificial Intelligence, 2018. URL
https://homes.cs.washington.edu/~marcotcr/aaai18.pdf.

[168] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into
the parameters of a language model? In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5418–5426, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.437.
URL https://aclanthology.org/2020.emnlp-main.437.

94

https://arxiv.org/abs/2012.00893
https://arxiv.org/pdf/1704.01444.pdf
https://arxiv.org/pdf/1704.01444.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1906.02361.pdf
https://www.aclweb.org/anthology/D19-1410
http://arxiv.org/abs/1602.04938
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
https://aclanthology.org/2020.emnlp-main.437

[169] M. Robnik-Sikonja and I. Kononenko. Explaining classifications for individual instances.
IEEE Transactions on Knowledge and Data Engineering, 20:589–600, 2008. URL
http://lkm.fri.uni-lj.si/rmarko/papers/RobnikSikonjaKononenko08-TKDE.pdf.

[170] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What
we know about how BERT works. Transactions of the Association for Computational
Linguistics, 8:842–866, 2020. doi: 10.1162/tacl a 00349. URL https://aclanthology.

org/2020.tacl-1.54.

[171] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for the right
reasons: Training differentiable models by constraining their explanations. In IJCAI,
pages 2662–2670, 2017. doi: 10.24963/ijcai.2017/371. URL https://doi.org/10.24963/

ijcai.2017/371.

[172] Cynthia Rudin. Stop Explaining Black Box Machine Learning Models for High Stakes
Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, 1:206–215,
May 2019. URL https://www.nature.com/articles/s42256-019-0048-x.

[173] Christian Rupprecht, Iro Laina, Nassir Navab, Gregory D. Harger, and Federico Tombari.
Guide me: Interacting with deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, 2018. URL https://arxiv.org/

abs/1803.11544.

[174] Swarnadeep Saha, Peter Hase, Nazneen Rajani, and Mohit Bansal. Are hard examples
also harder to explain? a study with human and model-generated explanations. arXiv
preprint arXiv:2211.07517, 2022. URL https://arxiv.org/pdf/2211.07517.pdf.

[175] Swarnadeep Saha, Shiyue Zhang, Peter Hase, and Mohit Bansal. Summarization
programs: Interpretable abstractive summarization with neural modular trees. arXiv
preprint arXiv:2209.10492, 2022. URL https://arxiv.org/pdf/2209.10492.pdf.

[176] Swarnadeep Saha, Peter Hase, and Mohit Bansal. Can language models teach weaker
agents? teacher explanations improve students via theory of mind. arXiv preprint
arXiv:2306.09299, 2023. URL https://arxiv.org/pdf/2306.09299.pdf.

[177] Pouya Samangouei, Ardavan Saeedi, Liam Nakagawa, and Nathan Silberman. Ex-
plainGAN: Model Explanation via Decision Boundary Crossing Transformations. In
ECCV 2018. Springer International Publishing, 2018. ISBN 978-3-030-01248-9 978-3-
030-01249-6. doi: 10.1007/978-3-030-01249-6 41. URL http://link.springer.com/10.

1007/978-3-030-01249-6_41.

[178] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Tor-
ralba, and Aleksander Madry. Editing a classifier by rewriting its prediction rules. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 23359–23373.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/

c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf.

[179] Soumya Sanyal and Xiang Ren. Discretized integrated gradients for explaining language
models. arXiv preprint arXiv:2108.13654, 2021. URL https://arxiv.org/pdf/2108.

13654.pdf.

95

http://lkm.fri.uni-lj.si/rmarko/papers/RobnikSikonjaKononenko08-TKDE.pdf
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://www.nature.com/articles/s42256-019-0048-x
https://arxiv.org/abs/1803.11544
https://arxiv.org/abs/1803.11544
https://arxiv.org/pdf/2211.07517.pdf
https://arxiv.org/pdf/2209.10492.pdf
https://arxiv.org/pdf/2306.09299.pdf
http://link.springer.com/10.1007/978-3-030-01249-6_41
http://link.springer.com/10.1007/978-3-030-01249-6_41
https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf
https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf

[180] Christian Schäfer. Particle algorithms for optimization on binary spaces. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 23(1):1–25, 2013. URL
https://arxiv.org/pdf/1111.0574.pdf.

[181] Johannes Schneider and Michalis Vlachos. Explaining neural networks by decoding
layer activations. In International Symposium on Intelligent Data Analysis, pages 63–75.
Springer, 2021. URL https://arxiv.org/pdf/2005.13630.pdf.

[182] Eric Schwitzgebel. Belief. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Fall 2019 edition, 2019.
URL https://plato.stanford.edu/entries/belief/.

[183] Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin Shen, Hongxia Jin, Shalini Ghosh,
Larry P. Heck, Dhruv Batra, and Devi Parikh. Taking a HINT: leveraging explanations
to make vision and language models more grounded. In ICCV, pages 2591–2600. IEEE,
2019. doi: 10.1109/ICCV.2019.00268. URL https://doi.org/10.1109/ICCV.2019.00268.

[184] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In International Conference on Machine
Learning, pages 3145–3153, 2017. URL https://arxiv.org/pdf/1704.02685.pdf.

[185] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. Workshop at
International Conference on Learning Representations., 2013. URL https://arxiv.org/

pdf/1312.6034.pdf.

[186] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Workshop at
International Conference on Learning Representations, 2014. URL https://arxiv.org/

abs/1312.6034.

[187] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem
Babenko. Editable neural networks. In ICLR, 2020. URL https://openreview.net/

pdf?id=HJedXaEtvS.

[188] Kevin Small, Byron C Wallace, Carla E Brodley, and Thomas A Trikalinos. The
constrained weight space svm: learning with ranked features. In ICML, pages 865–872,
2011.

[189] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.
URL https://arxiv.org/pdf/1706.03825.pdf.

[190] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D13-1170.

96

https://arxiv.org/pdf/1111.0574.pdf
https://arxiv.org/pdf/2005.13630.pdf
https://plato.stanford.edu/entries/belief/
https://doi.org/10.1109/ICCV.2019.00268
https://arxiv.org/pdf/1704.02685.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/pdf/1312.6034.pdf
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://openreview.net/pdf?id=HJedXaEtvS
https://openreview.net/pdf?id=HJedXaEtvS
https://arxiv.org/pdf/1706.03825.pdf
https://www.aclweb.org/anthology/D13-1170

[191] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing, pages 1631–1642, 2013. URL
https://www.aclweb.org/anthology/D13-1170.pdf.

[192] Shashank Srivastava, I. Labutov, and T. Mitchell. Learning classifiers from declarative
language. In NeurIPS 2017, 2017. URL http://www.cs.cmu.edu/~shashans/papers/

srivastava17-lldworkshop.pdf.

[193] Shashank Srivastava, Igor Labutov, and Tom Mitchell. Zero-shot learning of classifiers
from natural language quantification. In ACL 2018, July 2018. doi: 10.18653/v1/
P18-1029. URL https://www.aclweb.org/anthology/P18-1029.

[194] Joe Stacey, Yonatan Belinkov, and Marek Rei. Supervising model attention with
human explanations for robust natural language inference. In AAAI, 2022. URL
https://arxiv.org/pdf/2104.08142.pdf.

[195] Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right
concept: Revising neuro-symbolic concepts by interacting with their explanations. CoRR,
abs/2011.12854, 2020. URL https://arxiv.org/abs/2011.12854.

[196] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of fea-
ture attribution baselines. Distill, 5(1):e22, 2020. URL https://distill.pub/2020/

attribution-baselines/.

[197] Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation.
In International Conference on Machine Learning, pages 9269–9278. PMLR, 2020. URL
https://arxiv.org/pdf/1908.08474.pdf.

[198] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In International Conference on Machine Learning, pages 3319–3328, 2017.
URL https://arxiv.org/pdf/1703.01365.pdf.

[199] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep
Networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, June 2017. URL http://arxiv.org/abs/1703.01365. arXiv: 1703.01365.

[200] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. In NAACL-HLT
2019, 2019. URL https://arxiv.org/pdf/1811.00937.pdf.

[201] Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, and Jonathan Berant.
Leap-of-thought: Teaching pre-trained models to systematically reason over implicit
knowledge. In NeurIPS, 2020. URL http://128.84.4.27/pdf/2006.06609.

[202] Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, and Jonathan Berant.
Leap-of-thought: Teaching pre-trained models to systematically reason over implicit
knowledge. In NeurIPS 2020, 2020. URL https://arxiv.org/abs/2006.06609.

[203] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the

97

https://www.aclweb.org/anthology/D13-1170.pdf
http://www.cs.cmu.edu/~shashans/papers/srivastava17-lldworkshop.pdf
http://www.cs.cmu.edu/~shashans/papers/srivastava17-lldworkshop.pdf
https://www.aclweb.org/anthology/P18-1029
https://arxiv.org/pdf/2104.08142.pdf
https://arxiv.org/abs/2011.12854
https://distill.pub/2020/attribution-baselines/
https://distill.pub/2020/attribution-baselines/
https://arxiv.org/pdf/1908.08474.pdf
https://arxiv.org/pdf/1703.01365.pdf
http://arxiv.org/abs/1703.01365
https://arxiv.org/pdf/1811.00937.pdf
http://128.84.4.27/pdf/2006.06609
https://arxiv.org/abs/2006.06609

2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809–819,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://www.aclweb.org/anthology/N18-1074.

[204] Marcos Vińıcius Treviso and André F. T. Martins. Towards prediction explainability
through sparse communication. ArXiv, abs/2004.13876, 2020. URL https://arxiv.org/

pdf/2004.13876.pdf.

[205] Keyon Vafa, Yuntian Deng, David M Blei, and Alexander M Rush. Rationales for
sequential predictions. In EMNLP, 2021. URL https://arxiv.org/pdf/2109.06387.pdf.

[206] Jan N Van Rijn and Frank Hutter. Hyperparameter importance across datasets. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2367–2376, 2018. URL https://arxiv.org/pdf/1710.04725.pdf.

[207] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas
Sakenis, Jason Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis
for interpreting neural nlp: The case of gender bias. arXiv preprint arXiv:2004.12265,
2020. URL https://arxiv.org/pdf/2004.12265.pdf.

[208] Elena Voita and Ivan Titov. Information-theoretic probing with minimum description
length. In EMNLP, 2020. URL https://aclanthology.org/2020.emnlp-main.14.pdf.

[209] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[210] Cunxiang Wang, Shuailong Liang, Yue Zhang, Xiaonan Li, and Tian Gao. Does it make
sense? and why? a pilot study for sense making and explanation. In ACL 2019, 2019.
URL https://arxiv.org/pdf/1906.00363.pdf.

[211] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong Cao,
Daxin Jiang, Ming Zhou, et al. K-adapter: Infusing knowledge into pre-trained mod-
els with adapters. In Findings of ACL, 2021. URL https://aclanthology.org/2021.

findings-acl.121.pdf.

[212] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi
Li, and Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained
language representation. Transactions of the Association for Computational Linguis-
tics, 9:176–194, 2021. URL https://direct.mit.edu/tacl/article/doi/10.1162/tacl_

a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and.

[213] Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li.
Finding skill neurons in pre-trained transformer-based language models. arXiv preprint
arXiv:2211.07349, 2022. URL https://arxiv.org/pdf/2211.07349.pdf.

[214] Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan, Qinyuan Ye, Leonardo Neves, Zhiyuan
Liu, and Xiang Ren. Learning from explanations with neural execution tree. In ICLR,
2019. URL https://openreview.net/pdf?id=rJlUt0EYwS.

[215] Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le
Bras, Ximing Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from

98

https://www.aclweb.org/anthology/N18-1074
https://arxiv.org/pdf/2004.13876.pdf
https://arxiv.org/pdf/2004.13876.pdf
https://arxiv.org/pdf/2109.06387.pdf
https://arxiv.org/pdf/1710.04725.pdf
https://arxiv.org/pdf/2004.12265.pdf
https://aclanthology.org/2020.emnlp-main.14.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/pdf/1906.00363.pdf
https://aclanthology.org/2021.findings-acl.121.pdf
https://aclanthology.org/2021.findings-acl.121.pdf
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and
https://arxiv.org/pdf/2211.07349.pdf
https://openreview.net/pdf?id=rJlUt0EYwS

general language models to commonsense models. arXiv preprint arXiv:2110.07178,
2021. URL https://arxiv.org/pdf/2110.07178.pdf.

[216] Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, 2019. URL https://arxiv.org/pdf/1908.04626.pdf.

[217] Sarah Wiegreffe, Ana Marasovic, and Noah A. Smith. Measuring association between
labels and free-text rationales. CoRR, abs/2010.12762, 2020. URL https://arxiv.org/

abs/2010.12762.

[218] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229–256, 1992. URL https:

//link.springer.com/article/10.1023/A:1022672621406.

[219] Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 5105–5114. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf.

[220] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Hug-
gingface’s transformers: State-of-the-art natural language processing. ArXiv, pages
arXiv–1910, 2019.

[221] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[222] Prateek Yadav, Peter Hase, and Mohit Bansal. INSPIRE: Incorporating diverse feature
preferences in recourse. arxiv, 2021. URL https://openreview.net/pdf?id=6yzIuqKGnq.

[223] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical Attention Networks for Document Classification. In Proceedings of
the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1480–1489. Associa-
tion for Computational Linguistics, June 2016. doi: 10.18653/v1/N16-1174. URL
https://www.aclweb.org/anthology/N16-1174.

[224] Jihun Yi, Eunji Kim, Siwon Kim, and Sungroh Yoon. Information-theoretic visual
explanation for black-box classifiers. arXiv preprint arXiv:2009.11150, 2020. URL
https://arxiv.org/pdf/2009.11150.pdf.

99

https://arxiv.org/pdf/2110.07178.pdf
https://arxiv.org/pdf/1908.04626.pdf
https://arxiv.org/abs/2010.12762
https://arxiv.org/abs/2010.12762
https://link.springer.com/article/10.1023/A:1022672621406
https://link.springer.com/article/10.1023/A:1022672621406
https://proceedings.neurips.cc/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/pdf?id=6yzIuqKGnq
https://www.aclweb.org/anthology/N16-1174
https://arxiv.org/pdf/2009.11150.pdf

[225] Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-Wei Chang. On the faithfulness
measurements for model interpretations, 2021. URL https://arxiv.org/pdf/2104.08782.

pdf.

[226] Zhuofan Ying, Peter Hase, and Mohit Bansal. Visfis: Visual feature importance
supervision with right-for-the-right-reason objectives. Advances in Neural Information
Processing Systems, 35:17057–17072, 2022. URL https://arxiv.org/pdf/2206.11212.

pdf.

[227] Zhuofan Ying, Peter Hase, and Mohit Bansal. Adaptive contextual perception: How to
generalize to new backgrounds and ambiguous objects. arXiv preprint arXiv:2306.05963,
2023. URL https://arxiv.org/pdf/2306.05963.pdf.

[228] Omar Zaidan, Jason Eisner, and Christine Piatko. Using “Annotator Rationales”
to Improve Machine Learning for Text Categorization. In Human Language Tech-
nologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference, pages 260–267,
Rochester, New York, April 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/N07-1033.

[229] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer, 2014.
URL https://arxiv.org/pdf/1311.2901.pdf.

[230] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to
cognition: Visual commonsense reasoning. In IEEE/CVF 2019, 2019. URL https:

//ieeexplore.ieee.org/document/8953217.

[231] Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP
Rubinstein. Invertible concept-based explanations for cnn models with non-negative con-
cept activation vectors. In Proceedings of the AAAI Conference on Artificial Intelligence,
2021. URL https://arxiv.org/pdf/2006.15417.pdf.

[232] Ye Zhang, Iain Marshall, and Byron C. Wallace. Rationale-Augmented Convolutional
Neural Networks for Text Classification. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 795–804, Austin, Texas,
November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1076.
URL https://www.aclweb.org/anthology/D16-1076.

[233] Sumu Zhao, Damián Pascual, Gino Brunner, and Roger Wattenhofer. Of non-linearity
and commutativity in bert. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2021. URL https://arxiv.org/pdf/2101.04547.pdf.

[234] Xinyan Zhao and VG Vydiswaran. Lirex: Augmenting language inference with relevant
explanation. In AAAI, 2021.

[235] Ruiqi Zhong, Steven Shao, and Kathleen McKeown. Fine-grained sentiment analysis
with faithful attention. arXiv preprint arXiv:1908.06870, 2019. URL https://arxiv.

org/pdf/1908.06870.pdf.

[236] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual
representations via network dissection. IEEE transactions on pattern analysis and

100

https://arxiv.org/pdf/2104.08782.pdf
https://arxiv.org/pdf/2104.08782.pdf
https://arxiv.org/pdf/2206.11212.pdf
https://arxiv.org/pdf/2206.11212.pdf
https://arxiv.org/pdf/2306.05963.pdf
https://www.aclweb.org/anthology/N07-1033
https://arxiv.org/pdf/1311.2901.pdf
https://ieeexplore.ieee.org/document/8953217
https://ieeexplore.ieee.org/document/8953217
https://arxiv.org/pdf/2006.15417.pdf
https://www.aclweb.org/anthology/D16-1076
https://arxiv.org/pdf/2101.04547.pdf
https://arxiv.org/pdf/1908.06870.pdf
https://arxiv.org/pdf/1908.06870.pdf

machine intelligence, 41(9):2131–2145, 2018. URL https://arxiv.org/pdf/1711.05611.

pdf.

[237] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis de-
composition for visual explanation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 119–134, 2018. URL https://people.csail.mit.edu/

bzhou/publication/eccv18-IBD.

[238] Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan
Xiong, and Jian Tang. Towards interpretable natural language understanding with
explanations as latent variables. In NeurIPS, 2020. URL https://arxiv.org/pdf/2011.

05268.pdf.

[239] Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do feature attribution
methods correctly attribute features? arXiv preprint arXiv:2104.14403, 2021. URL
https://arxiv.org/pdf/2104.14403.pdf.

[240] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix
Yu, and Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint
arXiv:2012.00363, 2020. URL https://arxiv.org/pdf/2012.00363.pdf.

[241] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep
neural network decisions: Prediction difference analysis. In ICLR, 2017. URL https:

//arxiv.org/pdf/1702.04595.pdf.

[242] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexan-
der Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation
engineering: A top-down approach to ai transparency. arXiv preprint arXiv:2310.01405,
2023. URL https://arxiv.org/pdf/2310.01405.pdf.

101

https://arxiv.org/pdf/1711.05611.pdf
https://arxiv.org/pdf/1711.05611.pdf
https://people.csail.mit.edu/bzhou/publication/eccv18-IBD
https://people.csail.mit.edu/bzhou/publication/eccv18-IBD
https://arxiv.org/pdf/2011.05268.pdf
https://arxiv.org/pdf/2011.05268.pdf
https://arxiv.org/pdf/2104.14403.pdf
https://arxiv.org/pdf/2012.00363.pdf
https://arxiv.org/pdf/1702.04595.pdf
https://arxiv.org/pdf/1702.04595.pdf
https://arxiv.org/pdf/2310.01405.pdf

A Additional Results and Details for Chapter 4

A.1 Method Implementations

Explanation methods. For our tabular data, we use the implementations of Anchor and
LIME provided in the code for Ribeiro et al. [167]. We implement our prototype and decision
boundary methods. With text data, we use the implementation of Anchor provided by Ribeiro
et al. [167], and for LIME we use the code provided with Ribeiro et al. [165]. As before, we
implement our prototype and decision boundary methods.

Text and Tabular Models. We train neural networks for both tasks as follows: for our
tabular task model, we use a neural network with two hidden layers, each of width 50, as
Ribeiro et al. [167] do. For our text task model, we use a BiLSTM of the kind introduced
by Yang et al. [223], who reported state of the art results on a number of sentiment analysis
tasks. Since their network is designed for classification of documents, we limit our network
components to those relevant to classification of single sentences. We build our prototype
models on top of the feature extractor layers of each of these models, meaning that we only
replace the final classifier layer of the neural task model with a prototype layer. Accuracies
for each model are shown in Table A.1. The task models are trained with stochastic gradient
descent and a cross-entropy loss function, using early stopping on a validation dataset and l2
regularization with a coefficient of 1e−4. See training details for the prototype models below.

Prototype Model Training. Here we describe our prototype training algorithm,
beginning with weight initialization. We initialize 1) feature extraction layers using the
pretrained weights of our neural task model, 2) prototype vectors via k-means clustering on
the latent representations of the entire training set, and 3) final classifier weights as 1 where
the corresponding prototype’s class matches the weight vector’s class, and −.5 elsewhere. The
objective function for our prototype models contains three terms: 1) a cross entropy loss, 2)
l1 regularization on off-class weights in the classifier, and 3) a separation cost term, which is
the minimum distance between a latent representation and any prototype not belonging to
the input’s class.

Importance Scores in Protoype Model. For a given feature, we compute an impor-
tance score by taking the difference in function output with that feature present in the input,
relative to when that feature is omitted. With text data, there are a number of mechanisms
by which one can omit a word from an input; we opt for setting that word’s embedding to
the zero vector. For tabular data, to estimate a variable value’s importance we compute a
measure of evidence gain from knowing the value, relative to not knowing it. Formally, our
importance function is the difference between the function value at the original input and the
expected function value for the input with variable j removed. The expectation is taken over
a distribution generated by an imputation model conditioned on the remaining covariates.

Importance(xi,j) =

f(xi)− Ep(xi,j |xi,−j)f(xi,−j ∪ xi,j)

where p(xi,j |xi,−j) is given by a multinomial logistic regression fit to the training data, and
xi,−j is the data point without feature j, and f(xi,−j ∪xi,j) is the data point xi,−j with feature
value xi,j imputed at index j. We choose to use logistic regressions with no feature engineering

102

Model Accuracies

Data & Model Test Acc

Text
Task Model 80.93
Prototype 80.64

Tabular
Task Model 83.49
Prototype 81.90

Table A.1: Model accuracies on each data domain. Text data is split into partitions of 70%,
10%, and 20% for the train, validation, and test sets, respectively. We use the same data
processing scheme as Ribeiro et al. [167] for tabular data.

User Ratings

Model Correctness n µ CI σ

Text
Correct 464 4.44 .49 1.89
Incorrect 468 4.12 .67 1.81

Tabular
Correct 391 5.09 .27 1.64
Incorrect 394 4.64 .27 1.69

Table A.2: User simulatability ratings grouped by model correctness and data domain. Users
do not seem to be rating explanations simply based on model correctness, as the differences
in group means based on model correctness are not significant at a level of p < .05.

in order to 1) generate calibrated probability distributions, and 2) scale straightforwardly
with dataset size.

Decision Boundary Algorithm. In detail, the algorithm takes as input a data point
x∗, the classifier f , a perturbation distribution D(·|x∗), and a measure of distance between
inputs d(x1, x2). We first sample {x̃}10,000i=1 from the perturbation distribution around x∗. The
eligible perturbations to choose from are those with the opposite prediction from the original:
E = {x̃i|f(x̃i) ̸= f(x∗)}. Then using a distance function d, we select a counterfactual input as

x(c) = min
x̃i∈E

d(x∗, x̃i)

We provide a path from x∗ to x(c) by greedily picking the single edit from the remaining edits
that least changes the model’s evidence margin, which is the difference between positive and
negative class scores. Our distance function is the count of different features between inputs,
plus the squared Euclidean distance between latent representations. The Euclidean distance
is on a scale such that it serves as a tie-breaker:

d(x1, x2) =
∑
j

1(x1j ̸= x2j)

+ ||f(x1)− f(x2)||22.

103

Figure A.1: A screenshot of our user testing interface. This example is of the counterfactual
Post test with LIME for text data.

A.2 Perturbation Distributions

We design perturbation distributions for two points in our experiments: 1) selecting counter-
factual inputs in simulation tests, and 2) generating decision boundary explanations. First,
we describe our approaches for selecting counterfactual inputs, which are conditioned on the
need for a certain prediction type: either the same prediction as the original input or the
alternative class. In both data domains, we sample 10, 000 local perturbations around the
input and then randomly pick a sample that the model predicts to be of the needed prediction
type. While working with tabular data, we sample perturbations as follows: we randomly
choose to make between 1 and 3 edits, then choose the features to edit uniformly at random,
and finally pick new feature values uniformly at random. The only sampling constraint is
that a variable cannot be set as its original value.

For text data, we use a strategy that is similar to sampling from the perturbation
distribution in Ribeiro et al. [167], which is to randomly substitute words with their neighbors
in GloVe word embedding space, sampling neighbors with probability proportional to their
similarity. We make a few changes: we 1) decrease probability of token change with the length
of sentence, 2) cap the number of edited words at 5 in the chosen perturbation if possible,
and 3) limit edited tokens to be nouns, verbs, adjectives, adverbs, and adpositions. Example
perturbations are shown in the example of the user testing interface in Figure A.1, which is
given for a counterfactual test with text data.

A.3 Testing Environment

We show a screenshot of our user testing interface in Figure A.1. This example is of the
counterfactual Post test with LIME for text data. Tests are administered through spreadsheets,
wherein users read test material and place responses. Users are guided from file to file by the
experimenter.

104

B Additional Results and Details for Chapter 5

B.1 Experimental Details

B.1.1 Datasets and Examples

We conduct experiments with each method using two datasets. The first is the Common-
SenseQA1 dataset of Talmor et al. [200], with explanations collected by Rajani et al. [163]
to make a combined CoS-E dataset.2 We opt for the Version 1.0 of this dataset since it has
higher-quality explanations than Version 1.1.3 The dataset split sizes are 7610, 950, and 940
for the train, dev, and test, respectively. Next, we use the e-SNLI dataset of Camburu et al.
[22],4 which includes explanations for the SNLI benchmark [20].5 The split sizes are 549,339,
9842, and 9824, for train, dev, and test. Three explanations per data point are available for
the test data in e-SNLI; to compute BLEU, we use the first explanation in the data for each
data point; we use the sacrebleu Python package [154].6

Note that explanations for the CQA test split were not collected for the CoS-E dataset,
as the CQA test split itself is withheld as a leaderboard test set. Meanwhile, we report
results using 10% of the SNLI training data, since training our multi-task T5 models with the
full e-SNLI dataset can take over 24 hours per epoch on a single T4 GPU. These accuracy
results are shown in Table B.2. We report test set statistics here for simulation-related
experiments for CQA, shown in Table 5.3, along with dev statistics for SNLI. Trends across
models remain the same as with the data split statistics reported in the main paper. In Table
B.6, we confirm trends observed with the SNLI training data subset using models trained
with the entire dataset. Finally, Table B.1 shows additional examples from CQA and SNLI
plus model-generated explanations.

B.1.2 Hypothesis Testing

We describe results as statistically significant when p-values are below .05, where p-values are
calculated by bootstrap for LAS, a difference in the binomial means test for model accuracies,
and by linear regression with i.i.d. normal noise for associations between human ratings and
simulator correctness. Note that confidence intervals for LAS vary in width based on how
many data points are in each leakage bin. With the expert evaluation, we compute Spearman’s
rank correlation between proxy and human simulation variables (with a corresponding p-value).
For our data, the results are nearly identical to Pearson’s linear correlation and Kendall’s Tau.

B.1.3 Model Selection and Training Details

Our model selection procedure is to train each task model five times with differing seeds, then
select the model with the best development performance. We train one simulator model per

1https://www.tau-nlp.org/commonsenseqa
2https://github.com/nazneenrajani/CoS-E
3In Version 1.1, 20% of explanations were found to belong to a small set of duplicates that are unrelated to

the data point. See https://github.com/salesforce/cos-e/issues/2.
4https://github.com/OanaMariaCamburu/e-SNLI
5https://nlp.stanford.edu/projects/snli/
6https://github.com/mjpost/sacreBLEU

105

https://github.com/salesforce/cos-e/issues/2

condition. Since the two-agent experiments have far increased computational load, we run
one seed using a T5-Small during training, selecting the best task model according to its LAS
with this weaker simulator. Afterward, we retrain with a T5-Base simulator.

Our training procedures result in the following (approximate) experimental times for each
model when training on a single NVIDIA T4 GPU. With a T5-Base model and CQA data,
our baseline takes about 10 hours for 20 epochs; ST-Re about 10 hours for 20 epochs; ST-Ra
about 20 hours for 20 epochs; MT-Re about 12 hours for 20 epochs; MT-Ra about 12 hours
for 20 epochs. Multi-agent RL optimization with a T5-Small simulator takes about 16 hours
for 10 epochs, and SGD takes 24 hours for 10 epochs. Now with a T5-Base model and SNLI
data (using 10% of the training data), our baseline takes about 24 hours for 10 epochs; ST-Re
about 24 hours for 10 epochs; ST-Ra about 48 hours for 10 epochs; MT-Re about 30 hours
for 10 epochs; MT-Ra about 30 hours for 10 epochs. Multi-agent RL optimization with a
T5-Small simulator takes about 3 days for 5 epochs, and SGD takes 5 days for 5 epochs.
Using the full SNLI dataset, the baseline took four days to train five epochs, and either MT
model took 5 days for 5 epochs. We train generators for the ST conditions for 5 epochs on the
10% subset, which takes under 6 hours. Note that to follow our model selection procedure,
experimental times should be multiplied by five here, and further extended to include training
simulators.

Lastly, we note that T5-Base has 220 million parameters, while T5-Small as 60 million
parameters [162]. In general, this means our model sizes are 220 million parameters, although,
for multi-agent training, our effective model size is 280 million parameters.

B.1.4 Training Simulator Models

When training simulators, it is critical that the model can approximate the three distributions
used in LAS computation: pϕ(ŷi|xi, êi), pϕ(ŷi|xi), and pϕ(ŷi|êi). This is achieved by applying
dropout at the input token level to either (1) the entire x subsequence, or (2) the entire ê
subsequence. The same proportion of inputs in each batch are affected by the dropout, with
the subset being chosen randomly. Without this technique, simulator models rely too heavily
on explanations, and when conditioned only on x, they underperform baseline models that
are trained only with x. In our multi-agent experiments, we take a nearly identical approach,
but we make use of the fact that each of the three simulator predictions is made for each
batch (pϕ(ŷi|xi, êi), pϕ(ŷi|xi), and pϕ(ŷi|êi)). That is, we weight these terms in the simulator
objective by ratios implied by our dropout technique, rather than using dropout directly. See
the Section B.1.5 for the relevant hyperparameters.

B.1.5 Hyperparameter Tuning

For baselines, we tune hyperparameters such as the learning rate and batch size for accuracy,
selecting from [1e− 5, 1e− 4, 1e− 3] for LR and [4, 6, 12, 24, 36] for batch size, finally using
1e− 4, with CQA batch size 12 and SNLI batch size 36.

For multi-task models, we tune the mixing weight α based on task performance, searching
over values in [.3, .4, .5, .6, .7, .8], settling on .5.

For simulator models, we tune mixing weights (or dropout proportions) by selecting based
on each of the three predictions’ accuracies, relative to baseline models trained on one input
type only. Specifically, we select based on the max accuracy of the subsequence (x and e)
predictions (with accuracies added together), under the constraint that models must achieve
within 1 percentage point accuracy of the overall pϕ(ŷi|xi, êi) accuracy. Now taking λx,e, λx,

106

Generator

Encoder Sequences

The answer is: contradiction

The answer is: entailment

The answer is: neutral

Two children, both wearing tan coats,

Two kids are hugging.

premise:

hypothesis:

are embracing one another.

The answer is 'neutral' because: just because two
children are embracing does not mean they are hugging

The answer is 'entailment' because: hugging is a
rephrasing of embracing.

The answer is 'contradiction' because: children are not
kids.

Decoder Sequences

Label 3

.11

.87

.02

x

Figure B.1: Inputs and outputs for the sequence to sequence ST-Ra framework. One
explanation is generated for each answer choice, conditioned on the choice. The sequences
and answers are supplied to a sequence-to-sequence task model for scoring. We use separate
T5 models for the generator and task model.

and λe as loss function weights for predictions conditioned on their subscripts, the effective
loss function weights for CoS-E data are: λx,e = .5, λx = .5, and λe = 0; and for NLI, we use
λx,e = .4, λx = .4, λe = .2.

The most complex set-up for tuning is our multi-agent method. Here, we must tune mixing
weights for the task, LM, and explanation objectives, as well as the weight for penalizing
leaking explanations. First, we tune the task, LM, and simulatability weights directly for
overall simulator accuracy, without applying a penalty for leaking. We search each parameter
over the range [.2, .5] spaced by .05, with constraints that the three terms must add to 1, task
weight must be as high as LM weight, and sim weight must be as high as task weight). Lastly,
we tune the α trading off between explanation rewards and penalties by selecting directly for
LAS scores; we search the unit interval spaces by .1. For SGD, α is set to .8 for CQA and .9
for SNLI; the task loss is .35, LM loss is .15, explanation loss is .5, and the simulator model
objective adopts the same weights as described above. For RL, this mixing weight α is set
to .8 for both datasets; the task loss is .025, LM loss is .025, explanation loss is .95, and the
simulator model objective also adopts the same weights as described above.

B.2 LAS Robustness Checks

B.2.1 Continuous Leakage Scores and LAS Metric

While we binarize our proxy for label leakage based on prediction correctness and take the raw
average of explanation effects across two leakage bins, a continuous measure of leakage can be
obtained directly from p(ŷ|ê). Then, an arbitrary number of bins can be used. Interestingly,
for a T5 model fine-tuned by decoder sequence likelihood maximization, these probabilities are
tightly concentrated around values just above random chance performance (.33 for both CQA
v1.0 and SNLI), taking a roughly normal distribution. As a result, they are easily calibrated
via Platt scaling [153]. To check for our results’ robustness, we perform sensitivity analysis
with respect to the number of evenly spaced leakage bins chosen to subset, after calibrating
our leakage probabilities. Across bin counts between 2 and 100, LAS estimates typically vary
by less than 1 point, and as a result, method ranking is almost always preserved. In the limit
of the number of bins, our metric becomes the integral of the explanation effect as a function
of leakage probability. To ensure the robustness of LAS scores, this type of sensitivity analysis
should be performed whenever possible, but especially when explanation effectiveness is not
linearly related to the leakage probability.

107

B.2.2 Robustness to Seed and Model Choice

We check LAS scores across three random seeds since random seeds tend to have a large
influence on all statistics derived from pretrained neural language models [45]. Results are
shown in Table B.4. The rank ordering of scores is typically preserved, and in most cases,
scores display relatively low variance, although there are some outlying values.

We also check the effect of using a different simulator model, shown in Table B.5. We
compare between our primary choice of T5-Base and RoBERTa-Large models for SNLI data.
For ST models, the task model and simulator are of the same architecture, but we do not
evaluate MT conditions since RoBERTa is not generative. RoBERTa produces lower LAS
scores than T5, and their rank ordering is not necessarily the same, though ST-Ra is the
highest on average in both cases. The differences between them could result from their
pretraining procedures, architectural differences, finetuning sample efficiency, or another
cause.

B.3 Alternative Computational Models and Language Model-
ing Objectives

Our generative models neither gained nor lost accuracy relative to their baselines when
implemented with T5 models. Since learning from explanations to improve accuracy is another
goal in collecting human explanations as data, we seek to assess this trend with alternative
computational models and language modeling objectives. Hence, we test our MT models with
Masked Language Modeling (MLM) objectives in place of the Causal objectives used for the
generation, and wherever a generator or task model appears in current experiments, we test
the effect of substituting GPT2 and BERT in their place. We show results for these models in
Table B.8; GPT2+BERT methods are tagged as Enc methods. Just as with our generative
approaches, we observe no differences in accuracies between baselines and other methods.

B.4 Human Quality Rating Collection

We collected the human ratings of explanation quality from Amazon Mechanical Turk. For
CQA or SNLI, we sample 200 examples from the development or testing set (CQA’s testing set
does not contain human explanations). Each example has five explanations that are generated
by the four models we introduced in the main paper as well as humans. We anonymously
shuffle the five explanations and ask turkers to rate them separately on a 5-point Likert scale.
Meanwhile, we give them some instructions about “rate explanations by how they support the
answer choice, rather than whether they are literally true” and “explanations in which cases
should be rated low”. Figure B.2 shows the full instructions we used for collecting explanation
ratings for CQA, and Figure B.3 shows one CQA question and its answer choices plus the
first model’s choice and its explanation. SNLI has a similar GUIs. Turkers will be required to
rate five (choice, explanation) pairs on one page.

We collected 3 responses for each example, so there are 600 responses in total for each
dataset. We apply a simply quality filter to filter the responses from bad turkers. We first
manually picked 10 explanations from both CQA and SNLI that contradict their corresponding
model outputs (choices). As we know, these explanations are sure to be bad. So, we filter the
responses from those turkers who rated high (> 2 for CQA, > 3 for SNLI, since SNLI has

108

6/1/2020 localhost:63342/natural_language_explanations/shiyue/mturk_new1.html?_ijt=bhgsrfcadqja7jp6ut25l10e8r

localhost:63342/natural_language_explanations/shiyue/mturk_new1.html?_ijt=bhgsrfcadqja7jp6ut25l10e8r 1/3

Instructions (Please read carefully to ensure that your work gets approved as quickly as possible!)

Welcome!

We need your help in rating the quality of explanations.

For each assignment, you will be prompted with a general-knowledge multiple choice question and five
answers given by other people, along with an explanation they gave for why they picked their answer
. Your task is to rate each explanation on a scale of 1 to 5 for "Does this explanation tell me why they
picked their answer?". Here are some important criteria you must keep in mind:

1. 1 is the worst, which means the explanation either contradicts the answer choice or is meaningless.
5 is the best, which means the explanation explains the answer choice very well with meaningful
content.

2. Try to rate explanations by how they support the answer choice, rather than whether they are
literally true. Sometimes an answer choice may not be the same as what you would pick, but the
explanation may still show you what the person was thinking -- this kind of explanation is good.

3. Explanations in following cases should be rated low:
1. contradict the answer choice, or support a different answer choice;
2. meaningless or irrelevant, e.g., "this is the only/best choice";
3. only repeat the question;
4. only repeat the answer choice without any other content;
5. internally contradictory, e.g., "choice A is right because choice B is right".

An example showing what are good and bad explanations:

Question: How could you have fun by yourself with no one around you?
Choices: A. watching television; B. friend's house; C. fairgrounds

Answer Choice: friend's house
Bad explanation: watching television is a fun activity when on your own. (this explanation is bad
because it doesn't support the "friend's house" choice)
Good explanation: friend's house is where you can have fun by yourself. (this explanation is good
because if someone believed it, they would pick "friend's house")

Multiple Choice Question & Answer Choices:

Question: John needed a straight wire. Unfortunately, this one had endured some abuse and had become
what?

Choices: A: curved, B: bent, C: crooked

Answer Choice & Explanation 1:

Figure B.2: The instruction shown on Amazon Mechanical Turk page for human rating
collection on CQA.

a higher average rating) for these bad explanations. After filtering, we finally obtained 466
responses for CQA and 436 responses for SNLI.

109

6/1/2020 localhost:63342/natural_language_explanations/shiyue/mturk_new1.html?_ijt=mi076fuqiq6g91nl0dq5ma9upm

localhost:63342/natural_language_explanations/shiyue/mturk_new1.html?_ijt=mi076fuqiq6g91nl0dq5ma9upm 1/2

Instructions (Please read carefully to ensure that your work gets approved as quickly as possible!)

Welcome!

Multiple Choice Question & Answer Choices:

Question: John needed a straight wire. Unfortunately, this one had endured some abuse and had
become what?

Choices: A: curved, B: bent, C: crooked

Answer Choice & Explanation 1:

Answer1: bent

Explanation1: past and past participle of bend1

Rate: 1 2 3 4 5

Answer Choice & Explanation 2:

Answer2: crooked

Explanation2: a straight wire is a wire that is bent to bend.

Rate: 1 2 3 4 5

Answer Choice & Explanation 3:

Answer3: crooked

Explanation3: a straight wire is a wire that is bent and curved.

Rate: 1 2 3 4 5

Answer Choice & Explanation 4:

Figure B.3: A part of the questions for human rating collection on CQA.

110

Model Human

Input, Output, and Explanation Leaking?LAS Leaking?LAS

Question: Marathoners feel fatigued after running twenty six miles,
but some that have pushed them self too hard might be prone to
what?

Yes 1 Yes 1

Choices: A. passing out; B. death; C. exhaustion
STRa explanation: if you are running too hard, you are likely to
be exhausted.

Question: Where is likely to not just have a kosher restaurant?

Yes 0 No 0
Choices: A. new york city; B. jewish neighborhoods; C. jerusalem
Human explanation: kosher restaurant is not in new york city.

Question: When are people buying products more?

No -1 No -1
Choices: A. economic boom; B. disagreements; C. being able to
use
Human explanation: being able to use.

Question: John bought a new water hose. But he found his old
one near his car. Where did he find the old one?

Yes 1 Yes 0
Choices: A. garden shed; B. hardware store; C. garage
STRa explanation: garage is the only place where you can find
old water hoses.

Premise: A man of the cloth puts a black substance on a man ’s
forehead.

Yes 1 Yes 1
Hypothesis: The men are at church.
Choices: A. entailment; B. neutral; C. contradiction
Human explanation: You can not infer they are at church .

Premise: One tan girl with a wool hat is running and leaning over
an object , while another person in a wool hat is sitting on the
ground.

Yes 0 Yes 0

Hypothesis: A boy runs into a wall.
Choices: A. entailment; B. neutral; C. contradiction
STRa explanation: A girl is not a boy.

Premise: A man dressed in a light blue shirt dumping items from
a bin into another bin , while standing in a room full of food
donations.

Yes -1 Yes -1

Hypothesis: Foods are not stored in room by a man.
Choices: A. entailment; B. neutral; C. contradiction
STRa explanation: Food donations are not stored.

Premise: Taking a break to watch some TV

No -1 No 0
Hypothesis: Taking a neverending break
Choices: A. entailment; B. neutral; C. contradiction
Human explanation: Some TV is not enough to be on a neverending
break.

Table B.1: Example data points from both CQA and SNLI with Human or STRa label
(bold in text) and explanation. Leakage predictions and example-level LAS scores from both
model-based (T5) and human simulators are given.

111

SNLI CQA

Method Dev Acc Test Acc Dev Acc

T5-Base 88.58 88.14 (.63) 68.84 (2.95)
MT-Re 88.91 88.44 (.62) 69.26 (2.93)
MT-Ra 88.95 87.98 (.63) 68.95 (2.94)
ST-Re 87.67 87.67 (.64) 66.74 (3.00)
ST-Ra 87.69 87.69 (.64) 68.84 (2.95)

Multi-Agent
MT-Re (SGD) 88.24 87.94 (.64) 68.00 (2.97)
MT-Ra (SGD) 88.04 87.68 (.64) 65.58 (3.02)
MT-Re (RL) 88.31 87.91 (.64) 68.31 (2.96)
MT-Ra (RL) 87.99 87.72 (.65) 67.47 (2.98)

Table B.2: Model accuracies for the CQA and SNLI tasks. Generative models perform as well
as non-generative baselines. CQA results are for dev data and SNLI are dfor test.

Dev. SNLI Test CQA

Explanations LAS Score (CI) Acc(ŷ | x, ê) BLEU LAS Score (CI) Acc(ŷ | x, ê) BLEU

Human 4.36 (2.10) 98.40 - - - -
MT-Re -14.08 (1.78) 94.05 - -5.40 (3.73) 80.00 -
MT-Ra 2.70 (8.59) 99.92 - 2.25 (4.60) 91.91 -
ST-Re 1.52 (0.90) 94.44 - 2.78 (2.10) 82.23 -
ST-Ra 7.26 (3.20) 99.90 - 10.33 (3.34) 86.70 -

Multi-Agent
MT-Re (SGD) -9.56 (1.64) 94.44 - -2.16 (3.56) 77.23 -
MT-Ra (SGD) 5.06 (5.97) 99.90 - 4.53 (3.51) 84.79 -
MT-Re (RL) -12.08 (1.51) 93.52 - -6.55 (3.38) 80.95 -
MT-Ra (RL) -0.52 (0.45) 93.18 - -9.59 (2.93) 70.31 -

Table B.3: Evaluations of human and model-generated explanations by LAS score, overall
simulator accuracy, and BLEU. We show the opposite data split relative to the main paper, for
reproducibility. 95% confidence intervals as calculated by bootstrap are shown in parentheses.
Confidence intervals are wider when the nonleaking subset is very small, and smaller when
leaking and nonleaking subsets are both large.

112

Seed

Method Seed 1 Seed 2 Seed 3

SNLI
Human 4.31 1.68 5.34
MT-Re -15.83 -5.55 -4.66
MT-Ra 4.34 2.12 2.21
ST-Re 0.55 1.19 1.35
ST-Ra 6.74 4.93 5.14

CQA
Human 14.73 15.46 16.16
MT-Re -7.07 -5.38 -3.53
MT-Ra -1.31 0.32 6.33
ST-Re 3.76 1.82 2.46
ST-Ra 10.32 7.24 13.43

Table B.4: We check LAS scores across three random seeds, since random seeds tend to
have a large influence on all statistics derived from pretrained neural language models [45].
Seed 1 is the result reported in the main body. We test two additional seeds for our primary
experiments, retraining all models involved in the LAS score (including task model, simulator,
and ST generators).

Model

Method T5-Base RoBERTa-Large

Human 4.31 (1.97) -1.09 (2.69)
ST-Re 0.55 (0.87) -0.44 (0.95)
ST-Ra 6.74 (4.53) 4.74 (9.68)

Table B.5: LAS score comparison between T5-Base and RoBERTa-Large models with SNLI
data (95% confidence intervals obtained by bootstrap). For ST models, the task model and
simulator are of the same architecture. RoBERTa produces lower LAS scores than T5, and
their rank ordering is not necessarily the same. The differences between them could result
from their pretraining procedures, architectural differences, finetuning sample efficiency, or
another cause.

SNLI

Method Dev. Acc (CI) Test Acc (CI)

T5-Base 91.31 (.56) 91.01 (.57)
MT-Re 91.62 (.55) 91.14 (.56)
MT-Ra 91.56 (.55) 91.20 (.56)

Table B.6: NLI results using the full training dataset. Generative models of explanations can
maintain task accuracy.

113

LAS Human

Model -1 0 1

-1 0.271 0.659 0.071
0 0.082 0.781 0.138
1 0.031 0.654 0.315

Table B.7: Row-normalized contingency table between model-based and human variables
resulting from the expert simulation analysis. Model scores of -1 and 1 tend to shrink toward
human ratings of 0.

e-SNLI CQA

Method Test Acc (CI) Dev Acc (CI)

BERT-Base 87.01 (0.66) 67.89 (2.97)
ST-Re-Enc 85.67 (0.69) 63.16 (3.07)
ST-Ra-Enc 85.62 (0.69) 64.84 (3.04)
MT-Re-Enc 87.25 (0.66) 70.74 (2.89)
MT-Ra-Enc 87.23 (0.66) 69.79 (2.92)

T5-Base 88.14 (0.63) 68.84 (2.95)
MT-Re-MLM 88.26 (0.63) 69.05 (2.94)
MT-Ra-MLM 88.43 (0.63) 70.11 (2.91)

Table B.8: Task results table with alternative computational models and language modeling
objectives.

114

C Additional Results and Details for Chapter 6

C.1 Additional Experiments

We give additional experimental results with our synthetic dataset in an extended tech-
nical report on this topic, available here: https://arxiv.org/abs/2102.02201. Additional
experiments are conducted to answer a research questions including:

1. Can explanations help models learn to use strong (causal, generalizable) features rather
than weak ones?

2. What is the best way to compute explanation representations for prediction?

3. Can models aggregate information across several retrieved explanations?

4. What makes an explanation relevant across data points? What enables a retrieval model
to find relevant explanations for a new data point?

5. How does the co-dependence between classifier and retrieval model influence the viability
of joint training?

6. Does retrieval of explanations improve model performance on existing natural language
datasets?

C.2 Our Model for Initial Experiments

Here, we introduce our chosen model for incorporating explanation data, which makes use of
explanations as model inputs after they are retrieved from the training data (the “Retrieval”
graphical model in Fig. 6.2). Our approach is similar to Lewis et al. [112], who marginalize
over latent documents retrieved from Wikipedia for question answering, question generation,
and fact verification. The marginal distribution is given as:

pΘ(y|x) =
∑

e∈top-k(pη(·|x))

pθ(y|x, e)pη(e|x)

where top-k gets the top k texts as ranked by the retrieval model, pη(e|x). Note that we
never retrieve a data point’s own explanation when predicting its label. We do so because
explanations can leak the label [68] and this approach matches the test-time distribution,
where we assume explanations are not collected for new data points (see discussion in Sec. 6.2).

model inputs, with explanations each Marginalize over Compute classifierRetrieval given

Figure C.1: A depiction of our retrieval-based method TextCat. A total of Ck explanations
are retrieved and allocated into k latent variables, each a set of explanations E, which are
marginalized over to produce a final prediction.

115

https://arxiv.org/abs/2102.02201

Zhou et al. [238] also propose to use explanations as latent variables and retrieve expla-
nations at inference time, but they do not learn the retrieval model, marginalize over the
latents during inference, or prohibit data point’s own explanations from being retrieved. In
our experiments, we compare with their original approach and a version where we marginalize
over the latents and learn the retrieval model.

The form of pη(e|x) follows Lewis et al. [112] and Karpukhin et al. [95]. Given a query x,
unnormalized probabilities are computed as:

pη(e|x) ∝ exp (fη(e)
T fη(x))

where fη embeds each sequence into a vector. To compute top-k(pη(·|x)), we search through
the training explanations using FAISS [93]. We discuss methods for computing pθ(y|x, e) and
fη(e|x) in Sec. C.2.1. Because it may be helpful to reason over multiple explanations at once,
we extend this model to allow for explanations to be composed into a single “document.”
Assuming explanations to be conditionally independent given x, we can compute the probability
of a set of explanations E = {ec}Cc=1 as

p(E|x) ∝ exp (
∑
e∈E

fη(e)
T fη(x)),

where (1) a context size C will control the size of the explanation set, (2) a value of k implies
that the top Ck will be retrieved, and (3) we sort these Ck explanations into sets in order of
their probability pη(e|x).

We represent the overall approach in Fig. C.1 for one method of computing pθ(y|x,E)
(described fully in Sec. C.2.1), where explanations are concatenated with the query sequence.
Flowing from left to right, Fig. C.1 shows how explanations are retrieved from the training data
conditioned on a query sequence x, then allocated into k classifier inputs with C explanations
each. The k classifier predictions are aggregated by marginalizing over the latent variable,
Z = E.

Modeling Assumptions. In using retrieval, we make a few assumptions. First, since the
number of forward passes per data point scales with k, we require a relatively small value of
k, i.e. k ≤ 10, for reasonable computational efficiency in SGD-based training. Hence, we must
assume that this summation is sufficiently similar to the full summation over latent variables.
This assumption is more likely to hold when (1) a small number of documents account for
most of the probability mass in pη(e|x), and (2) a pretrained model pη(e|x) yields a decent
initial rank-ordering, such that some of the best documents are in the top-k. The exact value
of k we use depends on the experiment. A second, more basic assumption is that explanations
will be useful in predicting other data points’ labels. Such an assumption is needed since
we never condition on a data point’s own explanation. Lastly, during retrieval we assume
that explanations are independent given x, i.e. p(E|x) = ∏

e∈E p(e|x). This could be a poor
assumption when, for instance, explanations each contribute one of a number of needed facts,
in which case it would be helpful to retrieve additional explanations conditioned on what has
already been retrieved.

C.2.1 Conditioning Mechanisms

In this section we describe the methods used to compute pθ(y|x,E) and pη(e|x) (see Sec. C.2
for the overall model description). For the classifier pθ(y|x,E), we use two methods, TextCat

116

and H-Mean, which are described below. Then we describe the retrieval model, which is
based on Sentence-BERT [164].

TextCat. Represented in Figure C.1, this method takes a straightforward approach to
conditioning on a set of explanations: concatenating C explanations and the input x to form
a longer sequence of text. Each of the original sequences is separated by a special token, e.g.
[SEP] for BERT. In our experiments, we pass this longer sequence into a RoBERTa-base
model. After pooling the output token representations, we pass the resulting vector to a 1-layer
MLP for classification. We use mean pooling for our synthetic task and NLI; for relation
extraction tasks, we concatenate the representations corresponding to the initial tokens in the
subject and object words, since this is an especially effective pooling technique [8].

This approach allows the model to reason over all of the explanations and the input
together. While the method may be limited by the fact that some models can face difficulties
in processing long pieces of text [17], this issue is partly mitigated by marginalizing over k sets
of explanations. As a result of the marginalization, the final prediction can be conditioned on
a far higher number (Ck) of individual explanations than could fit in the context alone.

H-Mean. By H-Mean, we refer to the kind of unweighted hidden representation averag-
ing used in Co-Reyes et al. [32] and Zhou et al. [238]. H-Mean works by first obtaining
representations of the input x and a single explanation e at a time, then passing the un-
weighted average of these representations to an MLP. For a fair comparison with TextCat,
we use the same token pooling and a 1-layer MLP. So with C explanations to condition on,
x′ = concatenate(x, e), and vector representations from RoBERTa(x′), H-Mean obtains a
single representation as

h =
1

C

C∑
c=1

RoBERTa(x′)

which is then passed to the MLP for classification. H-Mean does not face the same sequence
length limitations as TextCat, but by separately processing of each explanations H-Mean
may fail to integrate information across explanations. This method also becomes expensive
when we marginalize over E (which is what allows retrieval to be learned), as it requires Ck
forward passes for a single prediction.

C.2.2 Retrieval

We use a similar approach to retrieval as in Lewis et al. [112], namely using vector representa-
tions of sequences from a pretrained transformer to compute

pη(e|x) ∝ exp (fη(e)
T fη(x)),

which is followed by computing top-Ck(pη(·|x). We use an approximate but sub-linear time
search method (FAISS) to find the top-Ck points [93]. In our experiments we find that it is
necessary to use Sentence-BERT [164] as our pretrained fη, rather than simply a pretrained
RoBERTa model. Sentence-BERT is a network trained to produce semantic representations
of sentences that can be compared under cosine similarity. In our experiments, we use the
Sentence-RoBERTa-base model trained on a combination of several NLI and semantic textual
similarity tasks, with mean pooling of token representations. We normalize the representations
we obtain from this model, so that our inner product is equivalent to a cosine similarity.

117

Note that during training, we never condition on a data point’s own explanation when
predicting its label. This is an important constraint for matching the train and test-time
distributions. At test time, we assume we have access only to past (training) explanations,
since they can be expensive to collect and conditioning on explanations at test time can lead
to label leakage, meaning what is essentially the benefit of human labeling could be mistaken
as improvements in model performance.

C.3 Training Details

C.3.1 Runtimes.

Regarding training times, we run most experiments on a single NVIDIA RTX 2080 GPU,
with runtimes as follows: 4.0 hours for 40 epochs of the no-retrieval RoBERTa-base using the
synthetic dataset; 5.7 hours for 40 epochs of RoBERTa-large in the same setting; 8.6 hours
for 20 epochs of learned retrieval with RoBERTa-base models on synthetic data.

C.3.2 Training Hyperparameters and Analysis

For optimization, we use AdamW with a learning rate of 1e−5 and gradient norm clipping
at norm 1. For the LR, we use a linear warmup and decay schedule peaking at 10% of the
training steps for experiments with synthetic data and at 1% for experiments with existing
datasets (given the larger training set sizes). The batch size is set to 10 across all experiments.

We decide how often to rebuild the representations of training explanations while learning
the retrieval model by tuning across frequency values in the range {10%, 20%, 33%, 50%,
100%} (i.e. to rebuild at this percentage of every epoch), as well as never rebuilding. In our
synthetic setting, the only noticeable drop in performance comes from never rebuilding. As
long as representations are re-encoded at least as often as every epoch, we notice no difference
in final test accuracy, though in early experiments we observed that rebuilding more often
improved training stability. To err on the safe side of training stability, we re-encode the
representations every 20% of each epoch in all experiments except e-SNLI with full data,
where we re-encode every 30% of each epoch.

Additionally, we use the stop-gradient function when computing the gradient of pη(e|x) as
follows:

∇η exp (sg[fη(e)]
T fη(x)),

meaning that we do not differentiate through the explanation embeddings, but only through
the query data point embeddings. In early experiments, we found that this decision contributed
to training stability, while improving computational efficiency, and we confirm that we observe
no differences in model accuracy as a result.

C.3.3 Experiment Confidence Intervals

We compute confidence intervals for our synthetic data tasks to represent seed variance around
some mean seed performance. We represent seed variance in figures rather than sample
variance because the sample variance is fairly low with 50,000 test points and could be driven
arbitrarily low with more generated test points. For instance, the 95% confidence interval
for a model accuracy of 90% would be ±0.26. To calculate seed variance, we run 10 random
seeds for our baseline condition (no-retrieval) with the default synthetic task setup.

118

C.4 Synthetic Task Generative Process

The required parameters to the data generation include: (1) a training sample size sample-size
and (2) num-tasks, the number of unique integer pairs to be counted, or, equivalently, the
number of points per index, ntask. In all experiments, we use a maximum integer value of
100 to appear in the sequences, and a maximum index value of 10,000. We give the general
generative process below. Note that the dev and test sets are constructed with the extra
constraint that sequences must not appear in the training data. Further note that this is the
generic version of generative process, and in some experiments the process is altered. For
example, in RQ3, indicator is always 1 and the construction of the map from index values to
(m,n) tuples occurs in a special way described in the experimental design for RQ3.

1. Sample {indext}num-tasks
τ=1 from the uniform distribution over integers {1,...,10000} without

replacement.

2. Sample {(m,n, r, d)t}num-tasks
τ=1 from the uniform distribution over integers, unif([1, 100]4),

without replacement and requiring that m ̸= n ̸= r ̸= d.

3. Define the set {(index,m, n, r, d)index)} for index and (m,n, r, d) drawn from their respective
sets, without replacement, in an arbitrary order.

4. Compute the number of points per index, ntask = sample-size // num-tasks.

5. For each index ∈ {indext}num-tasks
τ=1 :

(a) Sample a vector of length ntask, balanced between 1s and 2s, that gives the values of
{indicatorp}Pp=1 for the P points with that index.

(b) Sample a vector of length ntask, balanced between 0s and 1s, representing whether
the features 1[#m>#n] and 1[#r>#d] should correlate (1 implies they are equal,
and 0 unequal). This balance changes when the strong-weak correlation is intended
to change.

(c) Sample a vector of length ntask, balanced between 0s and 1s, representing whether
(m,n) or (r, d) should be the more numerous integers in the sequence (so that there
is no bias, even randomly, between features by size).

(d) For i ∈ 1 : ntask:

i. Place the index in the first element of an empty array, and the indicator in the
second.

ii. Based on the ith elements of the three vectors described above, allocate samples
of the integers in (m,n, r, d)index into the remaining 18 slots.

iii. If there are any remaining slots after these integers are randomly allocated, fill
them with i.i.d. samples from unif(1, 100).

119

D Additional Results and Details for Chapter 7

D.1 Method Implementation and Hyperparameter Tuning
Details

D.1.1 Replace Functions

1. Attention Mask. To make this a differentiable function, we compute the function by
taking the element-wise product between the attention distribution and the binary attention
mask, then renormalizing the attention probabilities to sum to 1. The difference between
this approach and deleting a token from an input text is that positional embeddings for
retained tokens are unchanged.

2. Marginalize. As in Kim et al. [101], we use a pretrained BERT-Base as our generative
model (or a RoBERTa-Base model, when the classifier is a RoBERTa model). The final pre-
diction is obtained from the marginal log probability as argmaxy ln

∑
x̃∼pϕ(x̃|x,e) pθ(y|x̃)pϕ(x̃|x, e),

where pϕ(x̃|x, e) is the distribution over imputed tokens. Since computing this marginal
distribution is quite expensive, we adopt a Monte Carlo approximation common to past
work [101, 224]. Using a subset of SNLI validation data, we tune the number of samples
over sizes in {10, 25, 50, 100}, selecting for maximum robustness. Surprisingly, 10 samples
performed the best in terms of robustness, though the margin was small over the other
values. Consequently, we select a value of 10, which also allows us to evaluate this method
at scale due to its relative computational efficiency. This finding is similar to the results
in Yi et al. [224], who ultimately use a value of 8 samples for Monte Carlo estimation of
the marginal distribution. This method is still over ten times slower than other Replace
functions given the need to perform many MLM forward passes.

3. MASK Token. Described in main paper.

4. Slice Out. Desribed in main paper.

5. Zero Vector. Described in main paper.

D.1.2 Explanation Methods

LIME. For a data point x, we train a model mϕ minimizing an MSE weighted by the kernel
π and regularized by Ω,

N∑
i=1

π(x, x̃i)(mϕ(x̃i)− fθ(x̃i)ŷ)
2 +Ω(ϕ)

where fθ(x)ŷ is the task model’s predicted probability, local samples x̃i have attention masks
that are imputed with a random number of 0s, and Ω is the default auto regularization in
the LIME package.

We next specify the form of the weight function π, the regularization method Ω, and the
distribution of perturbed data points p(x̃|xi), which are all set to the default LIME package
settings. The weight function π is an exponential kernel on the negative cosine similarity
between data points multiplied by 100. The perturbation distribution is over binary vectors:

120

in every sample, a uniformly random number of randomly located elements are set to 0, and
the remainder are kept as 1. Lastly, Ω is to perform forward selection when there are no more
than 6 features (i.e. perform greedy local search in the space of possible feature sets, starting
with no features and adding one feature at a time). When there are more than six features,
ridge regression is used, then the top k features according to the product of their feature
weight and the observed feature value (0 or 1 in our case). We use the regression weights as
the final salience scores.

Vanilla Gradient. We obtain model gradients w.r.t. the model input as salience scores,
one early method for explanation [113]. We compute the gradient of the predicted probability
w.r.t. input token embeddings, and we obtain a single value per token by summing along the
embedding dimension.

Integrated Gradients. The salience for an input x with baseline x̃ is given as

(x− x̃)×
∫ 1

α=0

∂f(x̃+ α(x− x̃))

∂x
dα.

We use the input embeddings of a sequence as x. By the Completeness property of IG,
token-level salience scores still sum to the difference in predicted probabilities between the
observed input and the baseline.

Random Search. Using a subset of SNLI validation points, we tune this method over two
possible search spaces: the space of all k-sparse explanations, when the sparsity levels allows
up to k tokens to be retained (or no lower than k tokens, for Comprehensiveness), and the
space of all allowably sparse explanations. We find it preferable to restrict the search space to
exactly k-sparse explanations. We adopt this same search space for all other search methods.

Anchors. We use the anchor-exp package made available by Ribeiro et al. [167] for our
experiments, with two modifications. First, we limit the compute budget used in this method
to 1000 forward passes (as with all search methods). Second, thoughwe sample locally around
inputs using the default argument masking str=‘UNKWORDZ’, we use the Attention Mask
Replace function for computing the model forward pass, as we do with all search methods.
Besides this, we call explain instance with default parameters, and we refer the reader to
Ribeiro et al. [167] for additional details. Note that we distinguish results on Sufficiency and
Comprehensiveness in terms of the maximum number of features selected by the explanation.
Additionally, this method has over a 3x slower wall-clock runtime compared to our search
methods used with the same compute budget (in terms of model forward passes), and as a
result we are constrained to reporting results across a smaller number of model seeds for each
dataset (between 3 and 10, rather than always 10).

Gradient Search. For an input of length L, this method sequentially updates a continuous
state vector s ∈ RL via gradient descent in order to minimize a regularized cross-entropy
loss between the original model prediction ŷ and the predicted probability given the input
x̃ = Replace(x, et). The explanation et is sampled as follows: e(d) ∼ Gumbel-Softmax(s(d)),
for d = 1 : L. The new state is st+1 ← st − α∇sL(ŷ, f(x̃)ŷ), though note that we use an
AdamW optimizer for this step. By virtue of the differentiable Attention Mask Replace

function and the Gumbel-Softmax estimator [127, 89], this loss is differentiable w.r.t. s. The

121

regularizer is an ℓ2 penalty on the difference between the expected sparsity
∑L

d=1 σ(s
(d)) and a

target sparsity, set to ceiling(.05 ·L), which is designed to encourage searching through sparse
explanations. The final salience scores are given by s, with the probabilistic interpretation
that σ(sj) is the probability that token j is in the optimal explanation.

We observe that this search method is equivalent to fitting a non-parametric model to
the dataset with the objective L given above. Recently, many parametric models have been
proposed for sampling explanations for individual data points [13, 9, 219, 145, 28, 37]. In
early experiments, we found that a parametric model performed far worse than this non-
parametric approach, and hence we leave out parametric models from further consideration.
This is perhaps unsurprising given how hard it may be to learn a map from inputs to good
explanations for all data.

Now we give more details to checkpoint selection, weight initialization, regularization,
and tuning for Gradient Search. For checkpoint selection: we select the search state that
achieves the best Sufficiency (or Comprehensiveness) as measured once every m gradient
updates. We do so because checking these metrics consumes some of the available compute
budget (see Supplement D.2.3), and therefore we check the metric value at intervals for
purposes of checkpointing. In our experiments, we check the metric every 20 gradient updates
and search until the total budget has been consumed. For initialization: a random initial
starting point is sampled from a Multivariate Normal distribution centered around 0, with
Σ = I. For regularization and other tuning details, we perform sequential line searches over
hyperparameters, according to Sufficiency scores on a subset of BoolQ data points. To tune a
specific hyperparameter, we set all other hyperparameters to some default values. We refer to
the hyperparameters we use after tuning as “final” hyperparameters, which are listed in the
table below (note: Number of Samples is the number of sampled explanations per gradient
update).

Hyperparameter Default Final Range

Number of Samples 10 1 1, 10, 20, 40
Optimizer AdamW AdamW AdamW, SGD
Scheduler None None None, Linear, Step, Cosine

Learning Rate 0.2 0.1 0.01, 0.05, 0.1, 0.2, 0.4
Sparsity Weight 1e-3 1e-3 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 0
Target Sparsity 0.1 0.05 0.03, 0.05, 0.1, 0.2, 0.3, 0.4

Taylor Search. At time step t, the state is an explanation et, and a heuristic is evaluated
on neighboring states in order to select the next state to compute the objective on. The
search space is all k-sparse explanations, and therefore neighboring states are those with
Hamming distance 2 to the current state (with one retained token being hidden and one
hidden token being retained). The heuristic is the projected change in the cross-entropy
loss between the model’s original prediction ŷ and this label’s probability given the input
Replace(x, e), for a proposed explanation e, which is computed as such: We first calculate
the gradient g ∈ RL of the cross-entropy loss with respect to the explanation et, which is
possible with the differentiable Attention Mask Replace function. Then, when optimizing for
Sufficiency, we find the two indices i and j as the solution to argmaxi,j g(i) − g(j) such that

the sparsity is maintained by flipping both tokens, meaning e(i) = 1 (x(i) is retained) and

e(j) = 0 (x(j) is hidden). The next state is obtained by setting e
(i)
t and e

(j)
t to these values.

This is a first-order approximation to the change in loss between the new and old state, based

122

on the Taylor expansion of the loss [49]. Note when optimizing for Comprehensiveness, we
use the argmin. Following Ebrahimi et al. [49], we ultimately use this search heuristic within
a beam search, starting from a random explanation, with width w = 3.

Hyperparameters for Taylor Search are listed below. We performed tuning with Taylor
Search for Sufficiency on a subset of BoolQ validation points, and ultimately we selected the
largest, best performing pair of values given the available compute budget.

Hyperparameter Default Final Range

Beam Width 2 5 1,2,3,4,5
Number of Steps 50 50 50, 100, 200

Ordered Search. More complicated forms for f , such as being quadratic in e, would make
finding the optimum of the function computationally intractable, let alone a full rank-ordering
of solutions [11].

Using Sufficiency scores on a subset of SNLI validation data, we tune over the ratio
between compute budget used in estimating the model fθ (i.e. salience scores) and the budget
used for the search. Out of 1000 steps, we consider using up to m steps for estimating the
salience scores via LIME, where m ∈ {10, 100, 200, 250, 500, 750}, ultimately using m = 250.

Parallel Local Search. Here we specify the Propose function used in Parallel Local Search,
and we describe some additional implementation details, some comparisons we performed with
Simulated Annealing, and tuning for the number of parallel searches r. The Propose function
samples new explanations by starting a random walk from the current explanation that ends
when a not-before-seen explanation is encountered. As in Taylor Search, neighboring states
have Hamming distance 2. Though we parallelize this search method, we maintain a shared
set of previously-seen explanations and compute the Propose function serially at each step so
that we never compute the more expensive objective function on the same explanations.

A similar algorithm, Simulated Annealing, uses a probabilistic update condition that
favors exploration early on in the search and exploitation later in the search [11]. We find
it preferable to use a deterministic update rule, moving to the new state if and only if its
objective value is better than the old state. Lastly, following tuning results, we use r = 10
parallel runs for all experiments, meaning that each run has a budget b = 100 when the overall
method budget is 1000 forward passes. The value of r is tuned over the set {1, 5, 10, 25}. We
note that using a value greater than 1 significantly improves the wall-clock runtime of this
algorithm, as the batched forward passes performed when r searches are done in parallel are
much more efficient than performing a greater number of forward passes with only 1 input.

D.1.3 Model Training Details and Experiment Runtimes

We now give implementation details for training models on our six datasets. The models
include BERT-Base or RoBERTa-Base models drawn from the Hugging Face Transformers
library [221], trained with AdamW [124] using a learning rate of 1e-5, and in general we select
the best model training checkpoint according to the validation set accuracy. When training
models for our analysis of counterfactual OOD-ness in Sec. 7.5, we train Standard models
for 20 epochs and Counterfactual-Trained models for 10 epochs, since in the latter case we
effectively double the number of inputs per batch. For our explanation evaluation experiments

123

in Sec. 7.6, we train all models for 10 epochs. Note that in every experiment we train ten
models using ten different random seeds.

All experiments are conducted on a NVIDIA RTX 2080 GPU. Wall-clock runtimes for
training models are: for Sec. 7.5 experiments, .6 hours per SNLI model and 1 hour per SST-2
model; for Sec. 7.6, training one model takes 4.8 hours for FEVER, .7 hours for BoolQ, 1.5
hours for SNLI, 2.9 hours for MultiRC, 1.7 for Evidence Inference, and 3.9 hours for SST-2.

For analysis and explanation evaluation experiments, we report the following runtimes:
Sec. 7.5 experiments take up to 12 hours for robustness analysis for each Replace function
(across seeds, models, and datasets), except for Marginalize which takes close to 48 hours.
We give max runtimes across datasets for obtaining and evaluating explanations to provide
an upper bound on wall-clock runtime given the variable sequence lengths between datasets,
meaning we report runtimes for the Evidence Inference dataset. With a compute budget
of 1000 forward/backward passes, we find observe that obtaining a set of explanations at
one sparsity level using 500 points for one BERT-Base model takes 2.5 hours for LIME, 2.5
minutes for Vanilla Gradient, 11 hours for Integrated Gradients, 10 hours for Gradient Search,
17 hours for Anchors, 5 hours for Taylor Search, 3 hours for Ordered Search, 5 hours for
Random Search, and 5 hours for Parallel Local Search.

D.2 Experimental Details

D.2.1 Data Preprocessing

We use datasets as prepared by the ERASER dataset suite [42], which are publicly available
and distributed under the original licenses for each dataset (including Creative Commons
and MIT License),1 as well as SST-2 which is publicly available under a Creative Commons
license [191].2 Note that BoolQ has only one split for evaluation. Additionally, note that for
experiments in Sec. 7.6, we use a subset of 50k points for training models on SNLI, and we
use the 500 shortest SST-2 test points according to the number of tokens given by the BERT
tokenizer [220] in order to compare with exhaustive search for this dataset.

For preprocessing, input text is split by spaces into a list of words. We tokenize each
word independently and concatenate the resulting tokens. Each input consists of a document
section and a query section. The document section contains the document while the query
section contains the question. The two sections are separated by [SEP]. The entire input is
preceded by a [CLS] token and followed by a [SEP] token. For inputs longer than 512 tokens
(the maximum input length for our task model Bert), we truncate the input document so that
the entire input is shorter or equal to 512 tokens.

D.2.2 Analysis of Counterfactual Input OOD-ness Details

In this evaluation, the tokens to be hidden from the model are selected uniformly at random
without replacement. We sample 10 random masks per data point and take the majority
prediction on the corresponding 10 ablated data points as the model’s overall prediction. The
exception to this procedure is Marginalize, since it is much more computationally expensive
than other methods, and therefore we use only one random explanation per input. Note
that we use a subset of 10k train points for each task, and we perform this experiment on
validation splits because the experiment motivates method design choices in Sec. 7.6.1.

1http://www.eraserbenchmark.com/
2https://www.kaggle.com/atulanandjha/stanford-sentiment-treebank-v2-sst2

124

http://www.eraserbenchmark.com/
https://www.kaggle.com/atulanandjha/stanford-sentiment-treebank-v2-sst2

Table D.1: Dataset statistics

Dataset # Classes Split Size Avg. document length Avg. query length

SNLI 3
Train 5000 24.8 -
Validation 9823 24.4 -
Test 9807 24.4 -

BoolQ 2
Train 9427 121.9 9.4
Validation 3270 119.8 9.3

FEVER 2
Train 97957 342.3 10.4
Validation 6122 291.2 10.7
Test 6111 278.7 10.7

Evidence
Inference

3
Train 7958 483.1 25.3
Validation 972 484.4 23.6
Test 959 482.0 27.0

SST-2 2 2
Train 67349 11.3 -
Validation 872 23.2 -
Test 1821 10.8* -

MultiRC 2 2
Train 24029 326.9 21.2
Validation 3214 326.1 20.7
Test 4848 314.8 20.8

125

Table D.2: Model accuracies

Dataset Standard Acc. CT Acc.

SNLI 85.84 (0.69) 85.08 (0.71)
BoolQ 74.16 (1.62) 73.76 (1.62)
FEVER 89.66 (0.76) 89.72 (0.76)
Evidence Inference 58.81 (3.12) 57.35 (3.13)
SST-2 92.89 (1.18) 92.43 (1.21)
MultiRC 68.96 (1.30) 67.76 (1.32)

D.2.3 Compute Budget Details

In this section we describe how the compute budget is spent by each explanation method.
Note that we consider both creating and evaluating explanations to draw from the available
compute budget, because some methods compute the Suff and Comp metrics while obtaining
an explanation, whereas others leave these metrics to be checked after an explanation is settled
on. We describe the standard case in this chapter of 1000 forward and backward passes per
final metric value.

1. LIME uses 996 forward passes to obtain an explanation, then 4 forward passes to obtain a
final metric value (one per sparsity level).

2. Vanilla Gradient uses only a single forward and backward passes. This is our only method
that uses a fixed compute budget.

3. Integrated Gradients uses 498 forward and backward passes and 4 forward passes to obtain
the final metric value.

4. Taylor Search uses no more than 1000 forward passes, given the beam width and number
of steps described in Supplement D.1.

5. The remaining search methods (including Ordered Search, Random Search, Parallel Local
Search) all use 1000 forward passes in total, since these methods involve exactly computing
the objective value at each step, so the metrics do not need to be recomputed after
explanations are obtained.

D.3 Additional Results

SST-2 Results. Here we discuss results for SST-2, which are shown in Table D.3. Our
primary observation here is that most of the search methods we consider perform as well
as Exhaustive Search (for sequences short enough to exhaustively search). The closest to
Exhaustive Search is Parallel Local Search, which exactly identifies the optimal explanation
for the Sufficiency metric and comes within .01 of the optimal Comprehensiveness value.
Meanwhile, the best salience method (LIME) underperforms these search methods by between
2.86 and 3.86 points, showing that salience methods fall well behind search methods in this
scenario.

Search Method Performance Over Time. In Figure D.1, we show search performance
across time steps for the three best performing search methods, Random, Ordered, and
Parallel Local. Note that Ordered Search begins at step 251 since the first 250 forward passes
are allocated to computing LIME, and Parallel Local Search begins at step 10 since we use 10

126

Table D.3: Explanation metrics for SST-2

Sufficiency ↓ Comprehensiveness ↑
Dataset Method Standard Model CT Model Standard Model CT Model

SST-2

LIME 1.98 (0.84) 5.92 (0.93) 52.42 (2.92) 45.75 (2.49)
Anchors 3.44 (0.96) 17.69 (1.64) 30.03 (3.13) 24.19 (2.54)
Taylor Search 0.09 (0.50) 5.02 (0.79) 45.65 (3.11) 38.91 (2.70)
Ordered Search -0.91 (0.47) 2.69 (0.79) 56.24 (2.82) 49.21 (2.48)
Random Search -0.91 (0.48) 2.70 (0.79) 56.11 (2.85) 48.98 (2.49)
PLS -0.91 (0.51) 2.68 (0.85) 56.28 (2.84) 49.25 (2.53)
Exhaustive Search -0.91 (0.51) 2.68 (0.85) 56.29 (2.84) 49.26 (2.53)

Comp (SNLI) Comp (FEVER)

Suff (SNLI) Suff (FEVER)

0 250 500 750 1000 0 250 500 750 1000

0 250 500 750 1000 0 250 500 750 1000
-0.1

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.7

0.8

0.9

1.0

Step

Method

Random
Ordered
Parallel Local

Search Method Performance Over Time

Figure D.1: Search method performance over time on FEVER and SNLI with Counterfactual-
Trained models, for searches that ran for 1000 forward passes. Shaded areas represent 95%
confidence intervals accounting for seed variance using 10 random seeds.

parallel runs. We see that Parallel Local outperforms Random early on and then continues to
remain the preferable method, as differences at step 1000 are statistically significant at p < .05.
In fact, for FEVER, where the search space is larger, Parallel Local will clearly continue to
improve with additional compute, while Random and Ordered plateau in performance by
1000 steps.

Each of these search methods tends to achieve good performance even by 250 steps.
We report results using this reduced search budget across datasets in Table D.4 in the
Supplement. We find that search methods outperform salience methods in 15 of 24 comparisons
(with 8 favoring LIME), suggesting that search methods can outperform salience methods
even with a far smaller compute budget. This is relevant if, for instance, one needs to obtain
explanations at multiple sparsity levels with a single compute budget for all of the explanations,
which could be useful for applications requiring all explanations to be visualized at once (or
visualized on demand with no latency).

Counterfactual-Trained Model Accuracy. In Table D.2, we show model accuracies on
test sets for standardly trained models (Standard) and Counterfactual-Trained (CT) models,
with 95% confidence intervals reflecting sample variance in parentheses. These accuracies
are from the single best performing seed for each dataset, according to dev set accuracies,

127

out of 10 trained models. Note that for SST-2, we report dev set numbers as test labels are
unavailable.

We observe that differences in accuracies are typically less than 1 point between the two
training algorithms. On average across the datasets, the difference is about 0.7 points. This is
a small but consistent gap, and hence it will be valuable for future work to study the causes
of this gap and identify ways to align the train and explanation-time distributions without
losing any model accuracy on test data.

Results with Reduced Search Budget. In Table D.4, we give results for a reduced search
budget of 1000 forward passes across sparsity levels, i.e. 250 per sparsity level. This setup
favors salience-based methods which can easily give explanations at varying sparsity levels.
With too many sparsity levels, this evaluation is heavily biased toward salience-based
methods, since it spreads the compute for search methods across sparsity levels. We use
a constant budget per sparsity for results in the main paper because we view the use of
multiple sparsity levels as an attempt to average results across possible desired settings, and
explanations at multiple sparsities may not always be needed. But ultimately, user preferences
will dictate whether explanations at multiple levels of sparsity are desired. This discussion
aside, the results are as follows: compared to the best salience-based method, LIME, search
methods are preferable in 15 of 24 comparisons, while LIME is preferable in 8 of
24 comparisons (at statistical significance of p < .05). Comparing within search methods,
PLS is preferable to Random Search 7 times and Random Search is preferable one time (at
p < .05). We observe that LIME performs best on Comprehensiveness, and therefore we
suggest that LIME may be the best method when explanations are desired at many sparsity
levels, the compute budget is heavily limited, and one is optimizing for Comprehensiveness.
Otherwise, PLS remains the preferable method.

Results with RoBERTa Models. Shown in Table D.5, we give a comparison between
LIME, Random Search, and PLS using RoBERTa-Base as our task model, as opposed to
the BERT-Base setting in the main paper experiments. Results are given for a subset of
datasets, with the same compute budget as in the main paper, using 10 Counterfactual-
Trained RoBERTa-Base models on each dataset. We observe similar trends and improvements
using PLS as with BERT-Base. PLS is the best method in each condition and consistently
outperforms Random Search, unlike LIME.

Weight of Evidence Metrics. Note that we can also measure the Sufficiency and Com-
prehensiveness metrics in terms of a difference in log-odds (i.e. weight of evidence) rather
than probabilities, which reflects differences in evidence for classes before this evidence is
compressed to the bounded probability scale [169, 2]. In this case, Sufficiency e.g. is computed
as

SuffWoE(fθ, x, e) = ln
fθ(x)ŷ
fθ(x)¬ŷ

− ln
fθ(Replace(x, e))ŷ
fθ(Replace(x, e))¬ŷ

(D.1)

where fθ(x)¬ŷ is the sum of all class probabilities except the predicted class, meaning each
term is the log-odds in favor of ŷ. In Sec. 7.6 we describe results for the standard difference-
in-probabilities version of each metric as well as the weight-of-evidence versions.

In Table D.6, we compare the default difference-in-probability version of our metric
(reported in the main paper) with the weight-of-evidence version, which is used by [169, 2].

128

We do not observe any notable differences in the trends between the metrics. We report one
case where a hypothesis test is statistically significant with WoE but not the difference in
probabilities; however, the difference between p-values is negligible (p = .052 vs. p = .030).

D.4 Discussion

Should We Prefer Counterfactual-Trained Models If They Are Harder to Explain?
This question is raised by the fact that Suff and Comp scores are often worse for CT models
(see Sec. 7.6). We suggest that the only reason for choosing between Standard and CT models
is that CT models’ explanations are not influenced by the model prior and random seed to
the extent that Standard models’ explanations are, as we argued in Sec. 7.4. If one prefers
explanations (and explanation metrics) to reflect what a model has learned from the data,
rather than the model prior and random seed, one would prefer to use CT models. It would
be a mistake to prefer the standardly trained models on the grounds that they are “more
easily explained” when this difference is due to the way we unintentionally influence model
behavior for out-of-distribution data points.

In Defense of Searching For Explanations. De Cao et al. [37] argue against using a
certain kind of search to find feature importance explanations on the grounds that it leads to
“over-aggressive pruning” of features that a model does in fact rely on for its output. In their
case, the objective of the search method is to find “a subset of features (e.g. input tokens)
... [that] can be removed without affecting the model prediction.” They suggest that this
method is susceptible to hindsight bias, asserting that “the fact that a feature can be dropped
does not mean that the model ‘knows’ that it can be dropped and that the feature is not
used by the model when processing the example.” They provide the example of a model
that (successfully) counts whether there are more 8s than 1s in a sequence, where they take
issue with the fact that the search method would return a single 8 as its explanation for any
sequence with more 8s than 1s, since this preserves the model prediction of “more 8s than
1s.” The problem with this explanation, it is said, is that it removes digits that are most
certainly being counted by the model when it comes to its decision. They provide empirical
evidence that a learned model does in fact count all 8s and 1s before deciding which are more
numerous.

One response to this argument is that if one obtains the optimal solution to an optimization
problem and is not satisfied with it, then the objective must not be capturing everything that
we care about, and the issue is not with the optimization method (i.e. search) that is employed.
In the case at hand, we should first note that the objective is actually under-specified. De Cao
et al. [37] suppose the search method returns the maximal set of tokens that can be removed
while maintaining the model prediction, but the objective is not given with any preference for
explanation sparsity (only that the removed tokens are a “subset” of the input). However,
De Cao et al. [37] would take issue with search-based explanations regardless of whether the
search method returns the minimal or maximal subset of tokens that can be removed without
changing the model prediction. This is because they want the explanation to identify tokens
that are “used by the model when processing the example.” This criterion is not formalized,
but the problem must be that it is a different criterion than the search objective, which is to
find a feature subset that preserves the model prediction. After formalizing the notion of a
feature being “used by a model,” one should then be able to search for good explanations
under the corresponding objective.

129

Explanation Distribution at Train Time. We reiterate that, to exactly match train
and test-time distributions, models would be trained on counterfactual inputs drawn from
explanation methods themselves, rather than simply random explanations. For now, this
remains prohibitively expensive, as it would increase the number of forward passes required
during training by up to 1000x depending on the budget to be used when explaining predictions.
We explored methods based on training on the true counterfactual distribution (i.e., based
on real explanations) to a limited extent, such as using real explanations only in the last
training epoch. However, this alerted us to a few obstacles in such approaches: (1) this
training distribution is non-stationary, as the FI explanations will change potentially with
each gradient update, (2) these experiments were still quite expensive and required selecting
a specific model checkpoint as the final model, which might not perform as well on accuracy
metrics, and (3) we found that the Suff and Comp metrics were sometimes similar to Standard
models, suggesting that these models were ultimately not as robust to the counterfactuals as
the CT models were (see Conclusion 3 in Sec. 7.6.3). Future work in reducing the costs of
obtaining explanations will help set the stage for more closely aligning the train and test time
explanation distributions. In this regard, there may be applicable insights to draw from work
on efficiently improving model robustness to local perturbations, such as Miyato et al. [134].

Another question that arises during training is whether applying the Replace function to
xi implies that the label yi should change. It may seem problematic, for example, to fit a
model to (Replace(x, e), y) pairs if removing even a small number of tokens in x tends to flip
the label. However, we note that what the model sees is an input with, e.g., MASK tokens in
place of some tokens, and what an optimal model will do in this situation is make a prediction
based on what evidence is available to it, with the knowledge that some features that could
have influenced the label have been removed from the input. That is, based on the overall
data distribution, such a model should produce appropriately calibrated outputs for inputs
where most of the visible evidence suggests the labels to be y1, while if the removed evidence
had been visible, the label could be seen to be y2.

Measuring Compute Budget. While we use the number of forward and backward passes
as our compute budget for each method, wall-clock time will continue to be a useful and
practical measure of compute for comparing methods. We note that batching forward passes
on a GPU will significantly speed up method runtimes for a single data point while keeping the
number of forward passes constant. In our experiments, this means that PLS is very efficient
compared to Gradient Search, which does not batch inputs in the forward or backward pass.
We use forward and backward passes as the unit of our compute budget since this is the
fundamentally rate-limiting step in obtaining explanations, but practitioners will do well to
compare methods with respect to wall-clock time as well.

130

Table D.4: Explanations metrics with a reduced search budget

Sufficiency ↓ Comprehensiveness ↑
Dataset Method Standard Model CT Model Standard Model CT Model

SNLI

Vanilla Grad 59.41 (2.42) 63.41 (0.81) 7.08 (1.63) 5.84 (1.06)
LIME (1000) 20.00 (2.02) 27.09 (1.68) 82.17 (2.82) 75.34 (1.94)
Ordered Search (250) -1.19 (0.87) 16.23 (1.45) 87.01 (2.40) 83.31 (1.73)
Random Search (250) -1.34 (0.90) 16.82 (1.46) 86.10 (2.52) 82.45 (1.82)
PL Search (250) -1.50 (0.96) 15.30 (1.37) 87.25 (2.42) 84.57 (1.68)

BoolQ

Vanilla Grad 30.81 (3.44) 16.40 (2.13) 2.43 (0.70) 2.25 (0.73)
LIME (1000) 2.14 (1.75) -1.56 (0.64) 52.03 (3.67) 36.26 (3.44)
Ordered Search (250) 1.44 (1.29) -1.71 (0.70) 43.33 (3.18) 27.78 (3.00)
Random Search (250) 0.09 (0.82) -1.84 (0.66) 49.46 (3.55) 27.58 (2.74)
PL Search (250) -0.56 (0.57) -2.61 (0.68) 54.85 (3.78) 31.98 (2.97)

Evidence
Inference

Vanilla Grad 20.76 (4.14) 12.96 (2.13) 2.92 (1.31) 1.57 (0.56)
LIME (1000) -16.07 (2.84) -14.93 (1.38) 47.61 (5.66) 33.97 (4.19)
Ordered Search (250) -14.47 (2.65) -11.67 (1.34) 39.69 (4.83) 26.51 (3.15)
Random Search (250) -15.28 (2.67) -10.86 (1.28) 38.79 (5.46) 23.65 (2.80)
PL Search (250) -16.18 (3.14) -13.78 (2.53) 41.90 (8.96) 25.27 (2.78)

FEVER

Vanilla Grad 19.63 (2.39) 13.21 (1.81) 1.52 (0.60) 1.02 (0.41)
LIME (1000) -0.24 (0.50) 1.36 (2.13) 33.86 (3.44) 22.06 (4.10)
Ordered Search (250) -0.73 (0.40) 1.00 (0.90) 28.70 (3.18) 16.30 (2.26)
Random Search (250) -1.16 (0.50) -0.30 (2.07) 29.13 (3.18) 16.58 (1.91)
PL Search (250) -1.06 (0.44) -0.36 (2.04) 25.81 (2.87) 15.22 (1.84)

MultiRC

Vanilla Grad 21.16 (3.47) 11.80 (1.38) 3.75 (1.18) 1.74 (0.79)
LIME (1000) -5.20 (1.19) -5.91 (1.19) 39.75 (4.80) 28.57 (2.18)
Ordered Search (250) -5.02 (1.03) -4.16 (1.10) 33.26 (4.25) 21.95 (1.92)
Random Search (250) -6.08 (1.17) -4.86 (1.20) 32.31 (4.30) 19.95 (1.67)
PL Search (250) -5.20 (1.30) -4.91 (1.27) 28.38 (3.85) 17.46 (1.49)

SST-2

Vanilla Grad 47.26 (3.79) 46.83 (1.41) 2.56 (0.71) 3.01 (1.00)
LIME (1000) 1.97 (0.84) 5.92 (0.93) 52.42 (2.93) 45.74 (2.52)
Ordered Search (250) -0.91 (0.47) 2.71 (0.79) 55.90 (2.84) 48.96 (2.50)
Random Search (250) -0.91 (0.46) 2.73 (0.75) 55.44 (2.52) 48.31 (2.18)
PL Search (250) -0.91 (0.47) 2.69 (0.79) 56.14 (2.84) 49.08 (2.50)

Table D.5: Explanation metrics for RoBERTa-Base models

Dataset Method Sufficiency ↓ Comprehensiveness ↑

SNLI
LIME 24.42 (1.65) 71.30 (2.63)
Random Search 11.52 (1.46) 81.43 (2.59)
PLS 9.73 (1.41) 83.44 (2.31)

FEVER
LIME 1.22 (0.81) 25.09 (2.56)
Random Search 1.10 (0.78) 22.46 (2.50)
PLS -0.40 (0.63) 27.61 (2.68)

131

Table D.6: Explanation metrics with weight of evidence

Sufficiency ↓ Comprehensiveness ↑
Dataset Method Diff. in Probs WoE Diff. in Probs WoE

Evidence
Inference

LIME -14.93 (1.38) -0.98 (0.14) 33.97 (4.17) 1.76 (0.29)
Random Search -12.71 (1.29) -0.81 (0.13) 26.50 (3.15) 1.35 (0.21)
PLS -20.33 (2.46) -1.44 (0.14) 38.71 (3.52) 2.09 (0.25)

MultiRC
LIME -5.90 (1.19) -0.33 (0.09) 28.57 (2.18) 1.54 (0.17)
Random Search -6.58 (1.20) -0.39 (0.09) 22.79 (1.78) 1.24 (0.13)
PLS -9.77 (1.45) -0.63 (0.13) 26.96 (2.05) 1.45 (0.16)

132

E Additional Results and Details for Chapter 8

E.1 Learned Optimizer Details

Architecture. KnowledgeEditor is a learned optimizer g : X × Y × Y × Θ → Θ that
produces new model weights by applying an adjusted gradient step to a model. For reference,
we give a glossary of symbols used here in Table E.1. For additional details beyond what is
presented here, we refer readers to De Cao et al. [38].

At a high level, gϕ first encodes an input xi and requested prediction change into a vector
h, then processes h into two low-rank matrices A and B that are used to transform the model
gradient on xi, ∇θL(xi, y∗i). For Transformer models, the method edits only attention and
feed-forward weights, so all model gradients match the shape of an associated weight matrix
of shape d1× d2. Formally, a new model θ∗ is obtained using a learned optimizer gϕ as follows:

h = LSTM([x; ŷ; y∗])

{u, v, γ, δ} = {MLPi(h)}4i=1

A = softmax(u)vT

B = softmax(γ)δT

η = σ(MLP(h))

θ∗ = θ + η(A ◦ ∇θL(xi, y∗i) +B)

where ϕ consists of all LSTM and MLP parameters.

Training Algorithm. The learned optimizer objective is optimized w.r.t. ϕ with AdamW
through a standard procedure of randomly sampling minibatches without replacement [124].
Within each batch, one datapoint is randomly selected as the Main Input, and the remaining
points are used as DR. To obtain update labels {y∗i }ni=1, we always use the opposite class
in binary classification. For sequence-to-sequence tasks, we use the correct label when ŷi is
incorrect, and when ŷi is correct, we randomly select another label from the training data.
This choice is in contrast to De Cao et al. [38] and Mitchell et al. [132], who use samples from
the model beam search as update labels for all points.

E.2 Additional Training Details

E.2.1 Compute Costs.

Learned optimizer memory. The hypernetwork has 92m trainable parameters for
RoBERTa-base (which is 125m parameters), and 105m parameters for BART-base (which
is 139m parameters). To increase training efficiency, we limit how far into the task model
history we backpropagate. As shown in Fig. E.1, when backpropagating through task
model parameters θt = θt−1+Update(xi, ŷi, y

∗
i , θt−1;ϕ), we continue backpropagating through

Update(xi, ŷi, y
∗
i , θt−1) but not θt−1, which is also dependent on ϕ. That is, we apply a stop-

gradient function to θt−1. This way, we compute the derivative ∇ϕUpdate(xi, ŷi, y
∗
i , θt;ϕ).

only once for each t, rather than recomputing these gradients for all subsequent time steps.
These choices allow the memory use of our training algorithm to remain constant in r. We

133

Task Model

Optimizer Backprop

Stop Gradient

Sequential Backprop Graph

Figure E.1: The backpropagation graph for sequential model updates.

Symbol Glossary

fθ Language Model

gϕ Learned optimizer

xi Main Input

ŷi LM output on xi

y∗i Desired output

∇θL(xi, y
∗
i) Gradient of LM

Update(xi, ŷi, y
∗
i , θ)Update one LM belief

L(ϕ;xi, ŷi, y
∗
i , θ) Belief update objective

for xi

LSequential(ϕ;D, θt)Sequential objective
(SLAG)

K # gradient steps in
Update(·)

r # beliefs updated in
LSequential

Table E.1: Symbol descriptions for the learned optimizer.

make the same choice for our K looped steps in a single application of the Update function,
so the gradient for the update at step k depends only on gϕ(xi, ŷi, y

∗
i , θ

(k)) and not θ(k−1).
See Fig. E.2 for a graph of memory use depending on r and k.

Experiment runtimes. We now give runtimes for experiments in the paper. Building the
belief graphs takes 25 hours for FEVER (n = 10, 444) and 17.5 hours for LeapOfThought
(n = 8642) on an NVIDIA RTX 2080 GPU. Computing summary statistics for graphs takes 3
hours on FEVER and 3 hours for LeapOfThought for statistics besides Update-Transitivity.
We compute Update-Transitivity for LeapOfThought with a subset of 4000 points, which
takes 45 hours.

All other experiments are run on a NVIDIA V100 32GB GPU. Training the task models
takes 7 minutes for LeapOfThought, 45 minutes for FEVER, 4 hours for zsRE, and 10 hours
for Wikidata5m. Training the learned optimizer with r = 1 takes 2.3 hours for LeapOfThought,
5 hours for FEVER, 9.5 hours for zsRE, and 16 hours for Wikidata5m. Training the learned
optimizer with r = 10 takes 53 minutes for LeapOfThought, 2.9 hours for FEVER, 7 hours
for zsRE, and 12.5 hours for Wikidata5m. Computing update statistics with the off-the-shelf
optimizers with r = 1 takes 4 minutes for LeapOfThought, 30 minutes for FEVER, 2.3 hours
for zsRE, and 3.9 hours for Wikidata5m. With r = 10, the baselines require 1 minute for
LeapOfThought, 15 minutes for FEVER, 54 minutes for zsRE, and 1.8 hours for Wikidata5m.

134

Dataset rtest K Objective

FEVER
1 5 Main
10 1 Main

LeapOfThought
1 5 Main
10 1 Main

zsRE
1 5 Main
10 5 Main

Wikidata5m
1 5 Main+Para
10 5 Main+Para

Table E.2: Final hyperparameters and objective terms of the learned optimizer for each task.

Total runtimes for each experiment should take into account multiple conditions and multiple
seeds of each model being run.

E.2.2 Hyperparameters and Objective Terms.

Training hyperparameters. We fit our RoBERTa-base and BART-base task models to
their respective datasets with the following hyperparameters: We train for 10 epochs on the
binary tasks, and 20 for the sequence-to-sequence tasks. When predicting with BART-base,
we use a beam search with width 5. In each case, we use AdamW from torch.optim with a
LR of 1e-5 and weight decay of 1e-4. We select the best model according to the best dev set
accuracy, checkpointing after each training epoch. The learned optimizers are optimized with
AdamW, using a learning rate of 3e-4 and weight decay of 0. We train the learned optimizer
for 5 epochs on each dataset except for LeapOfThought, which we train for 10 epochs given
its smaller size. The learned optimizers are also selected based on dev set performance, with
checkpointing after each training epoch. Their selection criterion is a raw average of Update
Success Rate (averaged over each kind of data), Retain Rate (Local Neutral) and ∆-Acc,
with terms dropped when they cannot be computed given the available data. Note that dev
epochs with zsRE and Wikidata5m are fairly slow, so in order to speed up our experiments
we compute dev epochs with a subset of 4000 dev points.

Learned optimizer. We give the final hyperparameter and objective terms used in each
experiment in Table E.2. Our objective ablation is given in E.9, and we select the best
performing condition for each dataset according to dev set performance, using the same
selection criterion outlined previously. We keep all weight coefficients λi equal rather than
tuning them. Main refers to the first term in Eq. 8.1, plus the KL term with random data.
We use Ktrain ≤ 5 for all experiments. For results across K values on zsRE, see Fig. E.6.

Baseline update method. We tune a baseline off-the-shelf optimizer separately for each
dataset, using rtest = 1. Our performance criterion is the same as with learned optimizers, a
raw average of Update Success Rate (averaged over each kind of data), Retain Rate (Local
Neutral) and ∆-Acc. The grid search is over the following parameters: The off-the-shelf
optimizers are from torch.optim and include {AdamW, SGD, and RMSProp} with default
arguments (except for the learning rate). We consider a number of maximum steps in {5,
10, 100}. The learning rates we consider depend on the optimizer: {1e-4, 1e-5, 1e-6} for
AdamW, {1e-4, 1e-5, 1e-6} for RMSProp, and {1e-1, 1e-2, 1e-3} for SGD. The LR ranges were
selected after some initial manual exploration of the space. Our final hyperparameter values
are shown in Table E.4 for each dataset. For comparison, De Cao et al. [38] use RMSProp

135

Relation % Test Data

Place of Birth 11.00
Award Received 11.00
Cause of Death 5.66
Place of Death 11.00
Place of Burial 8.33
Educated At 11.00
Child 11.00
Occupation 11.00
Spouse 11.00
Sibling 9.01

Table E.3: Wikidata relations and their proportion of the test data.

Dataset Optimizer LR Num. Steps

FEVER AdamW 1e-6 100
LeapOfThought SGD 1e-2 100
zsRE SGD 1e-1 10
Wikidata5m SGD 1e-1 10

Table E.4: Final hyperparameters of the baseline update method for each task.

with 100 update steps. The LR for zsRE and Wikidata5m may seem quite high, but this
is the condition that actually does the least damage to the model’s accuracy on other data,
∆-Acc. The baseline optimizes all of the trainable parameters in the language model, unlike
the learned optimizer which optimizes only attention and feedforward weights for purposes of
parameter efficiency.

E.2.3 Wikidata5m Additional Details.

We construct four paraphrases per Main Input by selecting from a set of alternative phrasings
for the entity and relation in the Main Input. The syntax for each paraphrase follows the
same simple template as the Main Input, in contrast to zsRE where syntax differs between
paraphrases. A couple details remain. Some relations are one-to-many, and therefore we
accumulate valid completing entities from the data as possible answers; later we compute
accuracy as an exact match with any possible answer. All 10 relations appear in each split of

Ours De Cao et al. [38] Mitchell et al. [132]

Update Success Rate (Main Input) Success rate Edit success
Update Success Rate (Paraphrase) Equivalence accuracy Edit success
Update Success Rate (Entailed Data) - -
Retain Rate (Local Neutral) - -
Retain Rate (All Data) Retain accuracy -
∆-Acc (All Data) Performance deterioration Drawdown

Table E.5: A glossary of terms used in work on model update methods. Note metrics are not
always calculated in exactly the same way. For instance, Performance deterioration is a ratio
in accuracies rather than difference in accuracies, and edit success from Mitchell et al. [132]
combines two metrics in our case. The performance metric in Zhu et al. [240] is an average of
Update Success Rate (Main Input) and ∆-Acc.

136

K

K

0

10

20

30

1 2 4 6 8 10
r

M
em

or
y

U
se

d
(G

B
)

Memory Usage by r

Figure E.2: Training memory usage in terms of K and r hyperparameters in our implementa-
tion, for a learned optimizer trained for a BART-base model on zsRE, using a batch size of
16. For comparison, the orange dashed line shows the memory use of training the BART-base
model on zsRE, using the same batch size. Our use of the stop-gradient function limits the
growth of runtime and memory w.r.t. both K and r. By accumulating gradients across points,
memory w.r.t. r is kept constant. The same trick could be applied to the K looped gradient
steps inside the Update function, at the trade-off of backpropagating K times per point rather
than one time.

Dataset Model Acc Paraphrase Cons ↑ Entailment Acc ↑ Contrapositive Acc ↑
FEVER RoBERTa-base 78.29 (0.86) - - -
LeapOfThought RoBERTa-base 93.66 (0.87) - 85.63 (1.08) 16.51 (2.71)
zsRE BART-base 21.01 (0.64) 69.50 (1.09) - -
Wikidata5m BART-base 10.21 (0.59) 25.84 (0.53) - -

Table E.6: Model accuracy and belief metric results and for four datasets.

the data. Only 33.80% and 37.18% of the entities in the dev and test splits are seen in the
training data, though we do not find that models perform better on entities seen in training.

E.2.4 LeapOfThought Additional Details

The LeapOfThought dataset consists of a fact and a claim for each datapoint, where the truth
of the fact implies that the claim has label yi (True/False). All of the facts in the data are
true, while half of the claims are true and half are false. When training the learned optimizer,
we treat the the facts as the Main Input when training the learned optimizer and claims as
entailed data. When training the True/False classifier, we fit to the claims, for which test
accuracy is 83.65 (± 1.05). This seems to generalize well to the facts, as test accuracy here is
93.66 (±0.87), although as the low contrapositive accuracy suggests (Table 8.3), the model
seems to be too prone to predicting true for this data.

Since very few of the Main Inputs are predicted as false, we run into a small dilemma
when fitting the learned optimizer with the use of the entailed data objective term. The
entailment between fact and claim only holds when the fact is true, so we can only compute
the objective when updating a point from false to true. This ends up being less than 10% of
the training data. We ultimately choose to oversample points that fit this description during
training of the learned optimizer, which allows the learned optimizer to fully fit to the entailed
data. Also note that during learned optimizer training, we include Entailed Data from other
data points besides the Main Input in the KL term in Eq. 8.1, and we measure ∆-Acc using
both Main Inputs and Entailed Data.

137

Dataset Data Type Input Label(s)

zsRE

Main Input What did Gifford Pinchot die of? {Leukemia}
Paraphrase How did Gifford Pinchot die?

Main Input Player Ali Kanaan plays for what
team?

{Sporting Al Riyadi
Beirut}

Paraphrase What team is Ali Kanaan associated
with?

Wikidata5m

Main Input Margarita Nolasco Armas has rela-
tion ‘place of birth’ to

{Orizaba, Veracruz;
Orizaba; etc.}

Paraphrase SusunW/Margarita Nolasco Armas
has relation ‘born at’ to

Local Neutral Margarita Nolasco Armas has rela-
tion ‘place of death’ to

Mexico City; Ciudad de
Mexico; etc.

Main Input Mary Good has relation ‘award re-
ceived’ to

{Garvan-Olin Medal;
Arkansas Women’s Hall of
Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner

of’ to

Local Neutral Mary Good has relation ‘educated at’
to

{The University of
Arkansas; U Arkansas;
etc.}

FEVER
Main Input Tardigrades are also known as space

bears.
True

Main Input The Lion belongs to the genus
Vulpes.

False

LeapOfThought

Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Main Input A amaranth is a herb. True
Entailed Data A amaranth has a nose. False

Table E.7: Example datapoint from each dataset, and auxiliary data that accompanies the
Main Input.

E.3 Noise in Datasets

We briefly document some shortcomings of each dataset, with reference to examples in Table
E.7.

FEVER. Some claims are slightly vague or ambiguous when taken on their own. For instance
“Doug Ducey was the CEO of Cold Stone Creamery and offered many opportunities to new
hires” is rated True, though this will depend heavily on what one thinks “many opportunities”
means. Similar whether or not “L.A. Guns is a tattoo shop” depends on which “L.A. Guns”
one is referring to, the tattoo shop or metal band. Of course, this is a generic issue of language,
and not unique to this dataset. Some inputs seem to be a matter of person opinion: “Los
Angeles is known for its food” is rated False.

LeapOfThought. Many examples use an “is a” relation, producing sentences like “A sunlight
is a good health.” This could be more false than true, but it’s a fairly nonsensical statement
to begin with. There are also other nonsensical or vague examples in the data: ”A friar is the
opposite of mineral” is labeled False. “A detective desires equal opportunity.” is labeled True.
It is not immediately clear what conditions would make these statements true or false.

138

FEVER ZSRE

1 2 4 6 8 10 1 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

r test

U
pd

at
e

S
uc

ce
ss

 R
at

e

Method by r train

Baseline
r=1
r matches test

Ablation by r

Figure E.3: Ablation across values of r for training and testing. On zsRE, our method
outperforms the baseline when rtest = 10, and the gap is likely to increase as rtest rises further.
When using a non-sequential objective from past work, performance declines drastically as
rtest rises.

zsRE. Some questions invoke potentially one-to-many or temporally dependent relations,
though there is only one ground-truth answer per question in this dataset. For instance, a
paraphrase of the question about Gifford Pinchot in Table E.7 is: ”What disease did Gifford
Pinchot have?” A person might have had many diseases over their life which could all be
valid responses. The answer is especially ambiguous for spatial relations, where a valid answer
might refer to a city, region, country, province, or continent.

Wikidata. Aliases sometimes vary greatly even as they refer to the same person, or they
are simply noisy. For example, as shown in Table E.7, “SusunW” appears in an entity name,
but this is actually a username of someone who contributed to the Wikipedia article for
Margarita Nolasco Armas. Meanwhile, other aliases for J.R.R Tolkien include “Tolkienian”
and “Mabel Suffield,” his mother. Rephrasings of relations might also create confusing inputs,
e.g. switching “child” with “has kids,” “daughter”, or “son.” Similar to zsRE, some relations
are also one-to-many and temporally dependent (like occupation), though we hope that by
using many valid answers we circumvent this issue to some extent when calculating prediction
correctness.

E.4 Metric Computation and Bootstrap Details

Metric computation. The only computationally difficult metric to calculate is ∆-Acc, which
requires computing the updated language model’s accuracy on other data after every single
belief update. We randomly sample other data after every update for this purpose, using
n = 30 points for zsRE and Wikidata5m and n = 200 points for FEVER and LeapOfThought.
We ensure that all evaluation data is used at some point during this sampling by preferentially
selecting data that has been infrequently selected before. We note that paraphrase consistency
is easy to evaluate for a small number of paraphrases per datapoint, as we have for both zsRE
and Wikidata5m. Additionally, on LeapOfThought, we compute ∆-Acc using both Main
Inputs and Entailed Data.
Update-Transitivity caveat. The % Update-Transitivity metric represents the answer to
the question: if updating belief A changes belief B, and updating belief B changes belief C,
what proportion of the time does updating A change C? We would treat this as a normative

139

Update Success Rate ∆-Acc

Desired Label Main Input Paraphrases All Data

Beam Label 91.19 (0.5) 92.07 (0.8) -0.39 (0.1)
Hard Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table E.8: Update metrics by optimizer training labels.

metric that we hope to maximize, except we do not know in general whether there is a
confounding belief D that determines the relationship between B and C. If changing A also
changed a confounding belief D, then we might not be able to expect that C should change
too. That said, when we have no reason to think there are such confounding beliefs, we would
expect a logically consistent model to display 100% Update-Transitivity of their beliefs. In Fig.
8.3, for instance, we see no reason to suspect there are confounding beliefs for the relationship
between the date Bessie Smith died and the writer of Despicable Me 2, and therefore we
would expect that updating the belief about what album Hot Right Now is on would change
the belief in Despicable Me 2’s authorship (which it does).
Bootstrap computation. We account for sample and seed variance by block bootstrap [50].
When there is a single statistic per data point, like Main Input Update Success, we form a
matrix of shape n× s for n data points and s model seeds (where the seed was used for both
task model training and learned optimizer training). We then resample rows and columns of
this matrix 10,000 times, which was sufficient for convergence. When we perform hypothesis
tests for the difference in statistics between conditions, we pair the data points by using the
same rows of this matrix at each step of the bootstrap (i.e. we conduct paired tests). For
metrics involving multiple data points per Main Input, like paraphrases or other random data,
we make a simplifying assumption where we do not resample the multiple data points but
just compute the average metric for those data points and treat that as the ground-truth
statistics for the Main Input. We explored using a full 3-dimensional bootstrap, where we
resample among these extra datapoints by constructing a matrix of shape n× s× n, but it
was quite slow and gave similar results to the block bootstrap.

E.5 Additional Results

Ablation across num. sequential steps. Fig. E.3 shows the results for an ablation across
rtest using two kinds of learned optimizers: SLAG1, where rtrain = 1, and a SLAG condition
where rtrain = rtest. It is critical to the success of learned optimizers to train them to update
points sequentially when this is a desired application. Further, sequential updating with
sequence prediction tasks is the only setting where we see learned optimizers outperform
baselines across all relevant metrics.

Choosing training labels for learned optimizers. In early experiments, we found that it
is beneficial to use all data points (including correctly predicted points) as Main Inputs during
training, rather than restricting training to only incorrectly predicted points. We still focus
on correcting wrong outputs at test time. But so we must select what label to use during
optimizer training. To get a Hard Label, we use the correct label for incorrectly predicted
points, and for correctly predicted points, we simply draw a label randomly from the labels
in the training data. The alternative Beam Label condition uses a sample from the model’s
beam search for a data point, as done in past work [38, 132]. We show update metrics for

140

Objective Term Ablation Update Success Rate Retain Predictions ∆ Acc

Dataset Objective Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
Main 100 (0.0) - - - 98.27 (0.1) -0.15 (0.1)
(no KL) 100 (0.0) - - - 40.42 (0.6) -27.19 (1.2)

LeapOfThought
Main 100 (0.0) - 76.43 (5.3) - 96.84 (0.3) -1.22 (0.8)
+Ent 100 (0.0) - 71.87 (5.3) - 96.52 (0.3) -0.40 (0.8)

zsRE
Main 94.46 (0.4) 94.44 (0.7) - - 81.96 (0.4) -0.24 (0.1)
+Para 93.75 (0.4) 94.41 (0.7) - - 75.24 (0.5) -0.42 (0.2)

Wikidata5m

Main 88.67 (0.7) 64.12 (0.7) - 49.78 (1.0) 71.04 (0.5) -1.54 (0.3)
+Para 87.46 (0.7) 81.06 (0.7) - 47.15 (1.0) 63.02 (0.6) -1.55 (0.3)
+LN 87.73 (0.7) 59.75 (0.7) - 60.49 (1.0) 72.69 (0.6) -1.57 (0.3)
+Para+LN 87.02 (0.7) 81.18 (0.7) - 56.86 (1.0) 68.42 (0.6) -1.65 (0.3)

Table E.9: Belief update results by the objective terms used for the learned optimizer. We
do not bold any numbers based on statistical significance. For tuning purposes we select
whichever condition achieves the higher selection criterion without testing for statistical
significance.

zsRE split by the desired label in Table E.8. If one’s goal is to fix wrong model outputs,
then it is much better to use either the correct label or a random label as the desired model
output during training rather than a sample from the model’s beam search. Update success
improves by 3.27 (±0.65; p<1e−4) points for the Main Input and 2.38 (±1.05; p<1e−4) for
Paraphrases, while ∆-Acc rises by 0.15 (±0.18; p=.09).

Which beliefs are hard to update? We hypothesize that beliefs will be easier to update
when they are more belief-like to begin with. We principally measure this via the correlation
between update success rate and a belief’s consistency on paraphrases before the update, for our
learned optimizer in a single-update setting (r = 1). Surprisingly, we observe no relationship
between update success and the belief consistency. The correlation between consistency and
update success is near 0 for both zsRE (ρ = −.027) and Wikidata5m (ρ = .013); see Fig. E.4
for a plot of the relationship. So it appears that the learned optimizer can update model
beliefs independently of how belief-like they are to begin with. We would also be interested in
considering consistency under entailment, but the update success rate on LeapOfThought is
already 100%, so there is no variance to explain.

Learning curve. In Fig. E.5 we show the learning curve of a learned optimizer trained
with SLAG on zsRE. The Main Input Update Success Rate steadily rises as a function of the
training set size.

Ablation by num. update steps. Fig. E.6 shows the results of an ablation across values
of K using a learned optimizer trained using SLAG with r = 1 on zsRE. Main Input Update
Success rises by over three points by increasing Ktest from 1 to at least 5. Using a value of
Ktrain that matches Ktest gives a further increase of about 0.5 points.

141

ZSRE

Wikidata5m

0.00 0.25 0.50 0.75 1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Pre−Update Consistency

U
pd

at
e

S
uc

ce
ss

 R
at

e

Which Beliefs Are Hard to Update?

Figure E.4: Beliefs are neither easier nor harder to update depending on their consistency
beforehand.

85

90

95

100

103 103.5 104 104.5 105

n

M
ai

n
In

pu
t U

pd
at

e
S

uc
ce

ss

Learning Curve for zsRE

Figure E.5: Main Input Update Success Rate across training set sizes, using SLAG on zsRE.

0.90

0.92

0.94

0.96

1 2 4 6 8 10
K test

U
pd

at
e

S
uc

ce
ss

 R
at

e

Training Obj. (K train)

1
Matches Test

Ablation by K

Figure E.6: Ablation across values of K for training and testing, using SLAG on zsRE. It is
useful to train the optimizer using the value of K it will use at test time.

142

Asylum Records is an English
 record label.

[y: false]

The New Orleans Pelicans
 play in the Eastern Conference

 of the NBA.
[y: false]

Telemundo is a English-language
 television network.

[y: false]

New Orleans Pelicans compete
 in the NBA.

[y: true]

John Deighton worked in California.
[y: true]

Victoria (Dance Exponents
 song) was released in the

 Southern Hemisphere in 1982.
[y: true]

Carlos Santana is a US president.
[y: false]

Richard Dawkins has yet to
 appear on the internet.

[y: false]

Bermuda Triangle is in the
 western part of the Himalayas.

[y: false]

Emma Watson was born.
[y: true]

Harold Macmillan was born
 on February 20, 1894.

[y: false]
Filming for Boyhood was stopped

 between 2002 and 2013.
[y: false]

CHiPs is an American comedy
 film.

[y: true]

Starrcade was eventually
 broadcast via pay-per-view

 umbrella.
[y: false]

Croatia has a king.
[y: false]

Saturn Corporation is also
 known as Toyota LLC.

[y: false]

Basildon is far away from
 England.
[y: false]

The Cincinnati Kid is a boy.
[y: false]

Paramore formed in 2007.
[y: false]

XHamster produces online
 content.
[y: true]

Figure E.7: A random subgraph of the belief graph for FEVER. Note all nodes actually are
connected to at least one another node.

Humphrey Bogart was ranked
 greatest male star of Classic

 American cinema.
[y: true]

Rachel Green appeared in
 every episode of Friends
 until the final episode in

 2002.
[y: false]

Angela Bassett is alive.
[y: true]

Colin Kaepernick became
 a starter in the National

 Football League.
[y: true]

1978 is Ian Brennan's year
 of birth.
[y: true]

A Floppy disk is composed
 of a thin and flexible magnetic

 transmission medium.
[y: true]

Saturn is only an asteroid.
[y: false]

Dan O'Bannon died on December
 17th, 2009.

[y: true]

Beaverton, Oregon's city
 center is in decline.

[y: false]

Margaret Thatcher was the
 most senior politician within

 the Conservative Party in
 the UK in 1975.

[y: true]

Starrcade was originally
 broadcast via television.

[y: true]

Taylor Lautner appeared
 in The Bernie Mac Show in 2001.

[y: false]

I Kissed a Girl was only recorded
 by Donald Trump.

[y: false]

Julianne Moore created the
 television series As the

 World Turns.
[y: false]

Highway to Heaven is an American
 television series.

[y: true]

Dan O'Bannon work was primarily
 science fiction and horror,
 serving as a screenwriter

 and director.
[y: true]

Sidse Babett Knudsen graduated
 on November 22nd, 1968.

[y: false]

Aleister Crowley was an English
 citizen.
[y: true]

Magic Johnson was a tap dancer.
[y: false]

Queen (band) is a Canadian
 rock band.
[y: false]

Figure E.8: A random subgraph of the belief graph for FEVER. Note all nodes actually are
connected to at least one another node.

143

On February 2, 2013, Chris
 Kyle died.
[y: true]

The Mirny (sloop-of-war)
 was a ship without allegiance.

[y: false]

St. Anger was released by
 Sub Pop Records.

[y: false]
Knocked Up is a work of art.

[y: true]

Mel B had a career.
[y: true]

Australia (2008 film) production
 took place in Bowen.

[y: true]

Daag is a home.
[y: false]

Harold Macmillan was born
 on February 20, 1894.

[y: false]

The Chrysler Building has
 yet to be surpassed in height.

[y: false]

Heavy Metal music was developed
 in the early 1970's.

[y: true]

Kuching is a city in Singapore.
[y: false]

James VI and I was a major advocate
 of a single parliament for

 Scotland and England.
[y: true]

Camden, New Jersey is a large
 human settlement.

[y: true]

Derek Hough barely starred
 in Make Your Move.

[y: false]

Chile is a country.
[y: true]

A River Runs Through It has
 lost every Academy Award.

[y: false]

Natural Born Killers was
 based upon Tarantino's original

 screenplay without revision.
[y: false]

The Lincoln-Douglas debates
 happened in Quincy, Illinois.

[y: true]

Carlos Santana is a musician.
[y: true]

Despicable Me 2 was produced
 by a company.

[y: true]

Figure E.9: A random subgraph of the belief graph for FEVER. Note all nodes actually are
connected to at least one another node.

144

F Additional Results and Details for Chapter 9

F.1 Experiment Details

Data Licenses. CounterFact is available by the MIT license at https://github.com/

kmeng01/rome [128], and ZSRE is available publicly at http://nlp.cs.washington.edu/zeroshot/
[111].

Data Filtering. We filter the CounterFact dataset to a subset of facts that are correctly
completed by GPT-J, in order to ensure that there is knowledge to localize in the model
for each point. We mark a completion correct when otrue appears among the first 36 tokens
sampled from the model given the prompt P using greedy decoding. GPT-J achieves a
completion accuracy of 32.6% under this scheme, and after starting with about 10% of
the CounterFact dataset, our final sample size is n = 652. We perform additional filtering
specifically for model editing in the Fact Erasure condition, where we filter points to have
a target probability pθ(otrue|s, r) of at least .02, so that there is a reasonable amount of
probability mass to be erased. In this condition, we have n = 489 points.

Compute. Experiments were run on a single NVIDIA A6000 GPU with 48gb memory.
Computing editing performance for n = 652 points with GPT-J for a single edit method
applied across model layers in the set {1, 5, 9, 13, 17, 21, 24, 28} could take about eight hours.
Saving causal tracing or representation zeroing results for these datapoints takes about twelve
hours. Regression analyses and plots can be made on demand (code in supplement) given the
data from the editing and localization experiments.

Edit Method Tuning. We tune the edit methods to have high rewrite scores while not
trading off too aggressively against paraphrase and neighborhood scores. More specifically,
this means we tune methods to have rewrite scores no higher than 99% (note methods can
easily get above 99% rewrite score), separately for each editing problem variant. The tuning
is done with the first 100 points of the CounterFact dataset, editing layer 6 for GPT-J and 18
for GPT2-XL. For ROME and MEMIT methods, we tune over the KL regularization weight
values in the set {.0625, .9, 1}. For constrained finetuning, we tune over the L∞ norm weight
values in the set {1e-4, 5e-5, 2e-5, 1e-5}. For both methods, we adopt default parameters
from Meng et al. [129] unless otherwise stated. We describe the relevant hyperparameters
below, for GPT-J first:

1. Error Injection. FT-1: norm constraint of 1e-4. FT-5: norm constraint of 2e-5. ROME:
regularization weight of 1. MEMIT: regularization weight of 0.9.

2. Tracing Reversal. FT-1: Norm constraint of 1e-5. FT-5: Norm constraint of 2e-5. FT-5:
2e-5. ROME: default parameters. MEMIT: default parameters.

3. Fact Erasure. FT-1: norm constraint of 1e-5. FT-5: norm constraint of 1e-5. ROME:
default parameters. MEMIT: default parameters.

4. Fact Amplification. FT-1: norm constraint of 1e-5. FT-5: norm constraint of 1e-5. ROME:
default parameters. MEMIT: default parameters.

145

https://github.com/kmeng01/rome
https://github.com/kmeng01/rome
http://nlp.cs.washington.edu/zeroshot/

0.00

0.25

0.50

0.75

1.00

1 4 8 12 16 20 24 28

(Central) Edit Layer

R
ew

ri
te

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Rewrite Score by Edit Layer

0.00

0.25

0.50

0.75

1.00

1 4 8 12 16 20 24 28

(Central) Edit Layer

P
ar

ap
hr

as
e

S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Paraphrase Score by Edit Layer

0.900

0.925

0.950

0.975

1.000

1 4 8 12 16 20 24 28

(Central) Edit Layer

N
ei

gh
b

or
ho

od
 S

co
re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Neighborhood Score by Edit Layer

Figure F.1: Edit success metrics for our four editing methods, under the Error Injection
objective. Left: Rewrite, Center: Paraphrase, Right: Neighborhood.

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

E
ss

en
ce

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Essence Score by Edit Layer

Figure F.2: Essence score by edit layer, for our four editing methods, under the Error Injection
objective.

5. Fact Forcing. Note that for all methods we decide to increase the number of gradient steps,
as convergence takes longer for finetuning (from 25 to 50 steps) and for the gradient-based
optimization for v∗ in ROME (from 20 to 25 steps). FT-1: norm constraint of 1e-4.
FT-5: norm constraint of 1e-4. ROME: 25 gradient steps for finding v∗. MEMIT: default
parameters (already set to 25 steps).

We run only the Error Injection and Fact Forcing conditions for GPT2-XL. Hyperparame-
ters are as follows:

1. Error Injection. FT-1: norm constraint of 1e-3. FT-5: norm constraint of 1e-4. ROME:
default parameters. MEMIT: default parameters.

2. Fact Forcing. FT-1: norm constraint of 5e-4. FT-5: norm constraint of 5e-5. ROME:
default parameters. MEMIT: default parameters.

F.2 Additional Results

ZSRE Dataset. Here, we describe experiments with the ZSRE dataset, which is commonly
used in past editing method papers [38, 132]. ZSRE includes naturalistic questions rather
than prompts intended for autoregressive cloze completion, as in CounterFact. Following past

146

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

O
ve

ra
ll

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Overall Score by Edit Layer

0.4

0.6

0.8

1.0

1 4 8 12 16 20 24 28

(Central) Edit Layer

O
ve

ra
ll

 S
co

re

Method

FT (ws=1)
FT (ws=5)
ROME (ws=1)
MEMIT (ws=5)

Error Injection Overall Score (+Essence) by Edit Layer

Figure F.3: Overall edit success for our four editing methods, under the Error Injection
objective. Left: The mean of Rewrite, Paraphrase, and Neighborhood Scores. Right: the
mean score with Essence Score included.

work [128], we use GPT-J to answer ZSRE questions in a zero-shot manner, and we edit the
model with ROME. We report results for ZSRE via plots of edit success vs. tracing effect in
Figs. F.13 (rewrite score) and F.14 (overall score), accompanied by regression analysis results
in Table F.7. We find that results with ZSRE match our conclusions with CounterFact, as
the results are quite similar to plots and regressions with CounterFact data. Tracing effects
are not predictive of edit success.

Representation Zeroing. Representation zeroing is a common localization technique
where neural activations are manually set to zero during a model forward pass [104, 15]. We
implement a form of representation zeroing that is exactly like Causal Tracing, except instead
of denoising already-noised representations, we set clean representations to zero. Specifically,
we simply run a normal forward pass until a certain set of layers (window size=5), where we
zero out representation values for the MLP output representations at the subject token indices
within those layers (then continue the forward pass). The localization effect is computed as
the proportion of the original predicted probability that is deleted via the zeroing operation
(ranging from no effect as 0% to 100% of probability deleted as 100%). These new results
are shown in Figs. F.15 for rewrite score and F.16 for overall score, using ROME on GPT-J
with CounterFact data. We obtain the same conclusions as our analysis with causal tracing:
localization via representation zeroing is not predictive of edit success. Specifically, we see
correlations between edit success and localization effect to be near zero across layers (using
either rewrite score or overall score for edit success).

Highly concentrated tracing effects. Since Causal Tracing analysis suggests that infor-
mation accrues gradually across layers (see Fig. F.4), it seems possible that information is
simply so diffusely spread across model layers that no matter what layer you edit, you will be
editing a layer where a fact is at least stored in part. Based on this observation, we want to
test whether tracing effects correlate better with edit success specifically when tracing effects
are concentrated in a small number of layers. This condition represents that a fact appears to
be stored in a small number of layers and not elsewhere. We hope that by editing in that

147

Table F.1: R2 values for predicting ROME edit success in Error Injection, subsetted to 10%
of the data that has the most concentrated tracing effects in a small number of layers. Even
when facts appear to be stored at a small number of layers and not other layers, tracing effects
are still not predictive of editing performance.

Concentrated Data R2 Values

Method Layer Tracing Effect Both

ROME 0.927 0.02 0.929

range of layers, we can more easily manipulate that fact. To identify points with concentrated
tracing effects, we use a heuristic for filtering points. Given the output of Causal Tracing
analysis for a point, i.e. one effect per layer (the max across tokens), we define the point to
have concentrated tracing effects when there are no more than three layers that have at least
50% of the maximum effect across layers (besides the layer with the max effect itself). Under
this criterion, about 10% of the data (74 of 652 cases) have concentrated effects. Note we use
our default tracing window size of 5 with the 28 layer GPT-J model for this experiment.

We show the results from our analysis on this data subset in Table F.1, and we observe
no changes in our main conclusions. For ROME with Error Injection, the added effect is
0.2%. Across editing problems and edit methods, the maximum added effect of including
tracing effects on R2 values for predicting rewrite score remains at 3.2% (for Fact Forcing
with constrained finetuning). Thus, we conclude that even when facts appear to be stored in
a small number of layers, localization results from Causal Tracing are still not informative
about editing success, while the choice of edit layer is a far more important factor in whether
a fact is successfully edited.

Measuring essence drift. Meng et al. [128] describe one possible consequence of model
editing as essence drift, which occurs when core properties of an entity change after attempting
to edit only one property of that entity. For example, changing where an island is located
might also cause the model to nonsensically treat the island as a university campus (see
example in Meng et al. [128]).

We aim to obtain an automatic metric to serve as a rough proxy for essence drift. A
related metric is calculated with “Local Neutral” data involving the same subject entity but
with other properties that are logically neutral with the original property of the subject being
edited [70]. However, we do not have “Local Neutral” data for the CounterFact dataset, and
essence drift aims to specifically measure changes to core properties of a subject.

Therefore, we automatically estimate changes to known properties of the subject s by
calculating the change in model perplexity over samples of text that were drawn from the
pre-edit model given the prompt “s is a ” (which tend to describe a number of key properties
of the subject s). We term these samples essence texts, and we obtain five samples per subject
prompt by sampling with multinomial top-k sampling using k = 5. Given our essence texts,
we measure the perplexity over the samples before and after editing a fact in the model, for
every edited fact in our dataset. Note this is quite similar to the essence drift regularization
objective used in the ROME optimization objective [128], but we consider it as a metric here.
We scale the change in perplexity to a fraction of 5, with the cut-off of 5 chosen to represent
a maximally bad change to the model perplexity. Similar to our other metrics, our essence
score is 1 if model perplexity on the essence texts does not change after editing the model

148

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

Tracing Window Size: 1 Tracing Window Size: 3 Tracing Window Size: 5 Tracing Window Size: 10

1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28
0.0

0.1

0.2

0.3

Layer in GPT-J

D
en

oi
si

ng
 E

ff
ec

t

Causal Tracing shows larger effects when multiple layers are denoised

Figure F.4: Tracing effects grow larger as the number of adjacent restored layer representations
increases (tracing window size).

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

ROME Edit Layer
MEMIT Edit Layers

Tracing Window Size: 1 Tracing Window Size: 3 Tracing Window Size: 5 Tracing Window Size: 10

1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28 1 4 8 12 16 20 24 28
0

50

100

150

200

Layer in GPT-J where Causal Tracing effects peak

C
ou

nt

Causal Tracing peak distribution shifts outward with lower window size

Figure F.5: Each individual plot shows the distribution of tracing curve peaks (the argmax
layer) across datapoints, using a different tracing window size. Together, the plots show how
the distribution of layers where the tracing curves peak for each point shifts outward toward
the first and last layer of the model as the tracing window size declines. This is primarily
due to a clipping effect from using a window size greater than 1. The way tracing values are
computed, a window size of 10 implies that the effect for “layer 1” is from restoring layers
1-5, while the effect for layer “layer 5” is 1-10. As a result, a tracing window size of 10 favors
layer 5 over layers 1-4, and reducing the tracing window size leads to these clumps of effects
shifting from layer 5 toward layer 1 (and from layer 24 to layer 28)

(capping to 1 in cases of slight decreases in perplexity), and it is 0 if the perplexity increases
by 5 or more.

We show essence scores for editing methods across layers in F.2. Interestingly, the trend
across layers for this metric is mostly counter to the trends for other metrics (Fig. F.1), with
editing later layers being generally preferable to editing earlier layers. As a result, when
combined with the other metrics in Fig. F.3, we see that the overall score trend flattens and
shifts slightly toward mid-range layers in the model.

F.3 Robustness Experiments

In addition to our main results with ROME for GPT-J and our Rewrite Score metric, we
include robustness experiments to confirm that results are similar for (1) other measures of
edit success including Paraphrase Score, Neighborhood Score, and Overall Score (Tables F.3,
F.4, and F.5), (2) different values of the tracing window size (Fig. F.6), (3) GPT2-XL rather
than GPT-J (Fig. F.7), (4) the original unscaled metrics from Meng et al. [128] (Fig. F.8),
and (5) using the tracing effect at the last subject token rather than the max across tokens

149

Rewrite Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.756 0.062 0.758 0.002 <1e-4
FT (5 layers) 0.775 0.055 0.777 0.002 <1e-4
ROME (1 layer) 0.947 0.016 0.948 0.001 <1e-4
MEMIT (5 layers) 0.677 0.024 0.678 0.001 0.199

Tracing Reversal

FT (1 layer) 0.067 0 0.067 0 0.997
FT (5 layers) 0.751 0.045 0.752 0.001 0.032
ROME (1 layer) 0.294 0.017 0.31 0.015 <1e-4
MEMIT (5 layers) 0.212 0.036 0.218 0.006 <1e-4

Fact Erasure

FT (1 layer) 0.643 0.028 0.646 0.003 <1e-4
FT (5 layers) 0.698 0.025 0.70 0.002 <1e-4
ROME (1 layer) 0.857 0.019 0.858 0 0.555
MEMIT (5 layers) 0.925 0.019 0.925 0 0.669

Fact Amplification

FT (1 layer) 0.383 0.014 0.393 0.01 <1e-4
FT (5 layers) 0.424 0.01 0.436 0.011 <1e-4
ROME (1 layer) 0.88 0.02 0.88 0 0.654
MEMIT (5 layers) 0.905 0.018 0.906 0.001 <1e-4

Fact Forcing

FT (1 layer) 0.697 0.104 0.724 0.027 <1e-4
FT (5 layers) 0.634 0.10 0.666 0.032 <1e-4
ROME (1 layer) 0.422 0.004 0.425 0.003 <1e-4
MEMIT (5 layers) 0.345 0.041 0.354 0.009 <1e-4

Table F.2: R2 values for predicting rewrite score from choice of edit layer and tracing effect,
across editing problem variants (corresponds to data in Fig. 9.6). Diff shows the added effect
of including tracing in the regression (Both vs. Layer Only), in terms of R2, and p-value
shows the results from an F-test comparing the Both and Layer Only models. Tracing has
some predictive value for Fact Forcing, but the R2 value remains small compared to the choice
of edit layer.

150

Table F.3: R2 values for predicting paraphrase score from choice of edit layer and tracing
effect, across editing problem variants. Diff shows the added effect of including tracing in
the regression (Both vs. Layer Only), in terms of R2, and p-value shows the results from an
F-test comparing the Both and Layer Only models. The added effect of including tracing
effects is very small across conditions (less than 3%).

Paraphrase Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.061 0.005 0.063 0.002 0.258
FT (5 layers) 0.036 0.003 0.038 0.001 0.582
ROME (1 layer) 0.279 0.001 0.303 0.024 <1e-4
MEMIT (5 layers) 0.246 0 0.269 0.023 <1e-4

Tracing Reversal

FT (1 layer) 0.004 0.001 0.004 0 0.989
FT (5 layers) 0.001 0 0.002 0.001 0.841
ROME (1 layer) 0.01 0 0.012 0.002 0.121
MEMIT (5 layers) 0.001 0 0.001 0 0.997

Fact Erasure

FT (1 layer) 0.046 0.001 0.048 0.002 0.303
FT (5 layers) 0.079 0.007 0.084 0.005 0.004
ROME (1 layer) 0.537 0.012 0.539 0.001 0.218
MEMIT (5 layers) 0.586 0.015 0.587 0.001 0.184

Fact Amplification

FT (1 layer) 0.005 0.012 0.022 0.017 <1e-4
FT (5 layers) 0.017 0.013 0.035 0.018 <1e-4
ROME (1 layer) 0.24 0.002 0.267 0.027 <1e-4
MEMIT (5 layers) 0.236 0.001 0.263 0.026 <1e-4

Fact Forcing

FT (1 layer) 0.044 0.004 0.046 0.002 0.367
FT (5 layers) 0.023 0.002 0.025 0.002 0.387
ROME (1 layer) 0.357 0.01 0.36 0.003 0.003
MEMIT (5 layers) 0.095 0.001 0.105 0.01 <1e-4

151

Table F.4: R2 values for predicting neighborhood score from choice of edit layer and tracing
effect, across editing problem variants. Diff shows the added effect of including tracing in
the regression (Both vs. Layer Only), in terms of R2, and p-value shows the results from an
F-test comparing the Both and Layer Only models. The added effect of including tracing
effects is very small across conditions (2% or less).

Neighborhood Score Table R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.005 0 0.008 0.002 0.197
FT (5 layers) 0.014 0.001 0.015 0.001 0.55
ROME (1 layer) 0.011 0.003 0.015 0.005 0.001
MEMIT (5 layers) 0.004 0.001 0.006 0.002 0.154

Tracing Reversal

FT (1 layer) 0.001 0 0.001 0 1
FT (5 layers) 0.001 0 0.002 0.001 0.946
ROME (1 layer) 0.001 0 0.002 0.001 0.946
MEMIT (5 layers) 0.001 0 0.002 0 0.981

Fact Erasure

FT (1 layer) 0.01 0 0.014 0.004 0.037
FT (5 layers) 0.01 0 0.013 0.004 0.06
ROME (1 layer) 0.04 0.005 0.046 0.006 0.001
MEMIT (5 layers) 0.05 0.007 0.059 0.009 <1e-4

Fact Amplification

FT (1 layer) 0.012 0.009 0.02 0.008 <1e-4
FT (5 layers) 0.016 0.008 0.025 0.009 <1e-4
ROME (1 layer) 0.04 0.01 0.05 0.01 <1e-4
MEMIT (5 layers) 0.035 0.008 0.044 0.01 <1e-4

Fact Forcing

FT (1 layer) 0.054 0 0.057 0.003 0.03
FT (5 layers) 0.019 0.001 0.022 0.004 0.011
ROME (1 layer) 0.299 0.022 0.311 0.012 <1e-4
MEMIT (5 layers) 0.046 0.012 0.066 0.02 <1e-4

152

Table F.5: R2 values for predicting overall score (raw average of rewrite, paraphrase, and
neighborhood scores) from choice of edit layer and tracing effect, across editing problem
variants. Diff shows the added effect of including tracing in the regression (Both vs. Layer
Only), in terms of R2, and p-value shows the results from an F-test comparing the Both
and Layer Only models. The added effect of including tracing effects is very small across
conditions (2% or less).

Ovr. Edit Score R2 Values

Editing Problem Method Layer Trace Both Diff p-value

Error Injection

FT (1 layer) 0.642 0.054 0.643 0.002 0.001
FT (5 layers) 0.663 0.047 0.665 0.002 0.001
ROME (1 layer) 0.62 0.003 0.629 0.009 <1e-4
MEMIT (5 layers) 0.525 0.008 0.534 0.009 <1e-4

Tracing Reversal

FT (1 layer) 0.294 0.025 0.296 0.002 0.054
FT (5 layers) 0.751 0.045 0.752 0.001 0.032
ROME (1 layer) 0.296 0.016 0.31 0.014 <1e-4
MEMIT (5 layers) 0.21 0.036 0.216 0.006 <1e-4

Fact Erasure

FT (1 layer) 0.28 0.007 0.283 0.004 0.008
FT (5 layers) 0.119 0 0.124 0.004 0.015
ROME (1 layer) 0.718 0.023 0.718 0 0.729
MEMIT (5 layers) 0.794 0.025 0.794 0 0.555

Fact Amplification

FT (1 layer) 0.188 0.003 0.199 0.011 <1e-4
FT (5 layers) 0.224 0.002 0.236 0.013 <1e-4
ROME (1 layer) 0.583 0.005 0.59 0.007 <1e-4
MEMIT (5 layers) 0.597 0.005 0.607 0.01 <1e-4

Fact Forcing

FT (1 layer) 0.487 0.056 0.5 0.013 <1e-4
FT (5 layers) 0.459 0.057 0.475 0.017 <1e-4
ROME (1 layer) 0.285 0.004 0.291 0.006 <1e-4
MEMIT (5 layers) 0.226 0.017 0.227 0.001 0.419

153

29.4%29.8%

75.1%75.2%

29.4%32.1%

21.2%23.3%

38.3%39.6%
42.4%43.7%

88.0%88.0% 90.5%90.6%

64.3%64.5%
69.8%69.8%

85.7%85.8%
92.5%92.6%

69.7%72.2%

63.4%66.5%

42.2%42.6%
34.5%35.9%

Tracing Reversal Fact Amplification Fact Erasure Fact Forcing

FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT FT-1 FT-5 ROME MEMIT
0.00

0.25

0.50

0.75

1.00

R2

Explanatory Variable(s): Layer Layer + Tracing Effect

Tracing Window Size 10: Tracing effects are very weakly predictive of edit success

Figure F.6: The results of our R2 analysis for predicting rewrite score are nearly identical
between using a tracing window size of 5 (shown in Fig. 9.6) or 10 (shown here).

(Fig. F.10). We consider the last subject token effect since this corresponds more directly to
the motivation for ROME (see Meng et al. [128]). We expand on each of these experiments
below:

Results for Paraphrase, Neighborhood, Overall Metrics. We recreate our regression-
based analysis across editing problem variants and editing methods using paraphrase score
and neighborhood score as our outcomes rather than Rewrite Score, as well as an Overall
Score that is the raw average of the three edit scores. These results are shown in Tables
F.3, F.4, and F.5 respectively. Similar to our analysis with rewrite score, these tables show
that tracing effects are barely predictive of edit success at all. For paraphrase score, the
largest gains in R2 values are around 0.03 (relative to the layer-only regression model), and
for neighborhood score, the largest gain is 0.02. The largest gain for overall score is 0.02 for
Fact Forcing with constrained finetuning. Our overall conclusion remains that tracing effects
are almost totally unrelated to edit success across editing problem variants, including for
different edit success metrics.

Results for Different Tracing Window Sizes. We repeat our analysis from Sec. 9.5
using tracing effects obtained from a larger tracing window size of 10, to match the value used
in Meng et al. [128]. Note that from Fig. F.4, we know that the tracing effects grow larger
as more adjacent layer representations are restored. When we recreate our main R2 analysis
using tracing effects with window size 10 (shown in Fig. F.6), we find that results are nearly
identical to those shown in Tables F.2, F.3, and F.4.

Results for GPT2-XL. We rerun our analysis with GPT2-XL, a 48 layer model [161],
while editing layers in the range {1, 5, 9, 13, 17, 18, 21, 25, 29, 33, 37, 41, 45, 48}. Here, we
use a tracing window size of 10, and we limit our experiments to focus on Error Injection
and Fact Forcing editing problems. As seen in Fig. F.7, we find very similar trends when
explaining rewrite score in terms of the choice of edit layer and the tracing effect at that layer.
The largest explanatory effects in terms of R2 are observed for Fact Forcing with constrained
finetuning, but these effects remain small at about 2%.

Results for Unscaled Metrics. We repeat our analysis using the original editing
metrics and absolute tracing effects from Meng et al. [128]. Their rewrite magnitude is the
absolute difference between the probability of the new target ofalse and the old true target
otrue after editing, pθ∗(ofalse|s, r) − pθ∗(otrue|s, r). The tracing effect is the absolute tracing
effect, pθ(otrue|snoise, r, v(t,ℓ))
− pθ(otrue|snoise, r), measured at the last subject token index. We adjusted our rewrite and
tracing metrics to (1) rely only on the target output probability, rather than difference in
probabilities of two different targets which might not be appropriate for our different editing

154

66.4% 66.6% 69.8% 70.0% 69.8% 69.9%

49.0% 49.5%
41.1% 42.9%

37.4% 39.5%

19.2% 20.0%
16.3% 17.8%

Error Injection Fact Forcing

FT-1 FT-10 ROME MEMIT FT-1 FT-10 ROME MEMIT
0.00

0.25

0.50

0.75

1.00

R2

Explanatory Variable(s): Layer Layer + Tracing Effect

GPT2-XL: Tracing effects are very weakly predictive of edit success

Figure F.7: Like with GPT-J, tracing effects are very weakly predictive of edit success across
editing problem variants for GPT2-XL while Fact Forcing shows the largest relationship.
Relative to the R2 of a model predicting rewrite score based on the choice of edit layer (blue),
a model with edit layer and tracing effects (orange) improves the R2 by at most .02 points for
Fact Forcing. The choice of edit layer explains a much greater share of the variance in rewrite
score.

problems, and (2) to always fall between 0 and 1 for better comparability between datapoints,
since absolute tracing effect are bounded by the original model probabilities. However, we
reach the same conclusions from our analysis when using the original editing metrics. We
show an example for rewrite magnitude and the absolute tracing effect for Error Injection in
Fig. F.8. The correlation between edit success and tracing effect is still near zero.

Results for Last Subject Token Effect. ROME increases the target probability
p(ofalse|s, r) by optimizing for a new output representation from a chosen MLP layer at the
last subject token index. Meng et al. [128] show that this choice of token representation is
critical to the success of the editing method, which is a hypothesis directly motivated by the
results from their Causal Tracing analysis. In our paper, we by default report results using
tracing effects that are the max across tokens at a given layer, for better comparability across
the editing methods we use. However, when we repeat our analysis using the tracing effect
specifically at the last subject token index, we obtain the same negative conclusions about the
relationship between Causal Tracing localization and ROME editing performance. We show
the correlations between Rewrite Score and Last Subject Token Tracing Effect in Fig. F.10,
where we see there are no positive correlations between editing success and tracing results at
any layer in GPT-J.

155

Edit Metric Regression Metric Predictor(s) Value

Rewrite Score

R2 Layer 0.947
Tracing Effect 0.016

RMSE
Layer 0.073
Tracing Effect 0.315

MAE
Layer 0.02
Tracing Effect 0.206

Overall Score

R2 Layer 0.618
Tracing Effect 0.003

RMSE
Layer 0.133
Tracing Effect 0.216

MAE
Layer 0.11
Tracing Effect 0.183

Table F.6: Additional regression error metrics (for CounterFact and ROME) lead us
to the same conclusion as our analysis based on R2. RMSE is root mean squared error, and
MAE is mean absolute error. Regressions predicting rewrite score (or overall score) from the
choice of edit layer achieve much lower prediction errors than regressions using the tracing
effect, suggesting that the choice of edit layer is much more important for edit success than
the tracing effect.

Edit Metric Regression Metric Predictor(s) Value

Rewrite Score

R2 Layer 0.795
Tracing Effect 0.042

RMSE
Layer 0.158
Tracing Effect 0.341

MAE
Layer 0.072
Tracing Effect 0.254

Overall Score

R2 Layer 0.654
Tracing Effect 0.059

RMSE
Layer 0.136
Tracing Effect 0.223

MAE
Layer 0.097
Tracing Effect 0.188

Table F.7: ZSRE regression results lead us to the same conclusion as our experiments on
CounterFact, using ROME editing. RMSE is root mean squared error, and MAE is mean
absolute error. Regressions predicting rewrite score (or overall score) from the choice of edit
layer achieve much lower prediction errors than regressions using the tracing effect, suggesting
that the choice of edit layer is much more important for edit success than the tracing effect.

156

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20 0.25

Last Subject Token Tracing Effect (Absolute Difference)

R
ew

ri
te

 M
ag

ni
tu

de

ROME Rewrite Magnitude by Abs. Tracing Effect

Figure F.8: Editing vs. tracing results for ROME at layer 6 for Error Injection, using the
un-rescaled rewrite and tracing metrics from Meng et al. [128]. Here, rewrite magnitude is
the difference between the probability of the new target ofalse and the old true target otrue
after editing, pθ∗(ofalse|s, r)− pθ∗(otrue|s, r). The tracing effect is the absolute tracing effect,
pθ(otrue|snoise, r, v(t,ℓ)) − pθ(otrue|snoise, r), measured at the last subject token index. The
correlation here is near zero, at ρ = −.006.

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re

ROME Rewrite Score by Tracing Effect (Error Injection)

Figure F.9: The relationship between ROME edit success and the tracing effect is near zero
at most edit layers in the model (for the standard Error Injection editing problem). Red lines
show perfect relationships between tracing effect and edit success.

157

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect at Last Subject Token

R
ew

ri
te

 S
co

re

ROME Rewrite Score by Last Subject Token Tracing Effect (Error Injection)

Figure F.10: The relationship between ROME edit success and the tracing effect at the last
subject token. The ROME method edits a fact by changing the output representation for the
MLP layer specifically at the token index corresponding to the last subject token. However,
editing performance and tracing effect at this position still do not positively correlate. Note
the distribution of points along the x axis changes depending on the choice of edit layer since
the distribution of tracing effects is calculated from tracing effects at that layer.

158

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re

Fact Forcing Rewrite Score by Tracing Effect (Grouped by Edit Layer)

Figure F.11: The relationship between Fact Forcing edit success and the tracing effect for
constrained finetuning of 5 adjacent layers. “Layer ℓ” indicates the center of this 5-layer
interval, and the dashed red lines show a hypothetical perfect relationship between tracing
effect and edit success. For many layers, there is a noticeable positive relationship between
tracing effects and editing success. Yet, (1) there is a high amount of variance in the outcome,
and (2) this variance is largely explained by the edit layer. As a result, tracing effects provide
little extra information for predicting edit success beyond the choice of edit layer (about 3%
more explained variance; see Fig. 9.6).

159

Layer 17 Layer 21 Layer 25 Layer 28

Layer 1 Layer 5 Layer 9 Layer 13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

O
ve

ra
ll

 S
co

re

ROME Overall Score by Tracing Effect (Error Injection)

Figure F.12: The relationship between ROME overall score (average of
rewrite/paraphrase/neighborhood scores) and the tracing effect is somewhat nega-
tive for most edit layers in the model (for the standard Error Injection editing problem).
Red lines show a perfect relationship between tracing effect and edit success, so a negative
relationship suggests that tracing localization results do not indicate that editing will be
successful.

160

Layer 13 Layer 17 Layer 21 Layer 28

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

R
ew

ri
te

 S
co

re

ZSRE: Rewrite Score by Tracing Effect

Figure F.13: Additional experiments on the ZSRE dataset show the same results as for
CounterFact, using the ROME editing method with rewrite score as our editing success metric
(see regression analysis results in Table F.7). Red lines show a perfect relationship between
tracing effect and edit success, so near-zero relationships suggest that tracing localization
results do not indicate that editing will be successful.

161

Layer 13 Layer 17 Layer 21 Layer 28

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tracing Effect

O
ve

ra
ll

 S
co

re

ZSRE: Overall Score by Tracing Effect

Figure F.14: ZSRE experiments using overall score (average of
rewrite/paraphrase/neighborhood scores) as the edit success metric.

162

Layer 13 Layer 17 Layer 21 Layer 25

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Zero Ablation Effect

R
ew

ri
te

 S
co

re

ROME Rewrite Score vs Zero Ablation Effect

Figure F.15: Additional experiments with representation zeroing as the localization method
show the same results as for Causal Tracing, using the ROME editing method and rewrite
score as the edit success metric. Red lines show a perfect relationship between representation
zeroing and edit success, so near-zero relationships suggest that representation ablation
localization results do not indicate that editing will be successful.

163

Layer 13 Layer 17 Layer 21 Layer 25

Layer 1 Layer 5 Layer 6 Layer 9

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Zero Ablation Effect

O
ve

ra
ll

 S
co

re

ROME Overall Score vs Zero Ablation Effect

Figure F.16: Additional experiments with representation zeroing as the localization method
show the same results as for Causal Tracing, using the ROME editing method and overall
score as the edit success metric. Red lines show a perfect relationship between representation
zeroing and edit success, so near-zero relationships suggest that representation ablation
localization results do not indicate that editing will be successful.

164

	Thesis Statement
	Abstract
	Introduction
	Overview of Chapters

	Human Evaluation of ML Explanations
	Introduction
	Background and Related Work
	What Does ``Interpretable" Mean?
	Explanation Methods
	Evaluating Interpretability

	Explanation Methods
	LIME
	Anchor
	Prototype Model
	Decision Boundary
	Composite Approach

	Experimental Design
	Data and Task Models
	User Pool
	Simulation Tests
	Subjective Simulatability Ratings

	Results
	Do explanations help users?
	How do users rate explanations?
	Can users predict explanation effectiveness?

	Qualitative Analysis
	Explanation Success Example
	Explanation Failure Example

	Discussion
	Conclusion

	Natural Language Explanation Methods
	Introduction
	Related Work
	Modeling With Explanations
	LAS: Leakage-Adjusted Simulatability
	Multi-Agent Explanation Optimization
	Experimental Results
	Automatic Explanation Evaluation
	Human Validation of LAS
	Accuracy-Interpretability Trade-off
	Multi-Agent Game

	Conclusion

	Adding Explanation Data to Discriminative Learning
	Introduction
	Formalizing the Roles of Explanations
	Formal Framework and Relevant Work
	Promising Models

	Synthetic Task
	Initial Experiments
	Explanation Retrieval Enables a Model to Solve Our Task
	Why Is The Task Hard Without Explanations?

	Discussion & Conclusion

	Feature Attribution Methods and Evaluation
	Introduction
	Related Work
	Problem Statement
	The Out-of-Distribution Problem in Explanations
	Analysis of Counterfactual Input OOD-ness
	Explanation Methods and Experiments
	Explanation Methods
	Experimental Setup
	Main Results

	Conclusion

	Model Editing and Belief Graphs for LMs
	Introduction
	Related Work
	Updating Beliefs in Language Models
	Experiment Setup
	Datasets
	Methods Evaluated

	Experiment Results
	Do LMs have beliefs about the world?
	Can we update beliefs in LMs?
	How does the learned optimizer objective influence performance?

	Analysis
	Belief updates improve consistency
	Which beliefs are hard to retain when updating other beliefs?
	Belief Graphs

	Discussion and Conclusion

	Localization and Editing of Knowledge in LMs
	Introduction
	Related Work
	Notation and Background
	Data Notation
	Causal Tracing
	Model Editing with ROME
	Editing Metrics

	Does Edit Success Follow From Localization?
	Experiment Design
	Model and Data
	Experiment Results

	Reconciling Localization and Editing
	Editing Problem Variants
	Experiment Design and Additional Edit Methods
	Experiment Results

	Discussion
	Conclusion

	Conclusion
	Published Work
	Additional Results and Details for Chapter 4
	Method Implementations
	Perturbation Distributions
	Testing Environment

	Additional Results and Details for Chapter 5
	Experimental Details
	Datasets and Examples
	Hypothesis Testing
	Model Selection and Training Details
	Training Simulator Models
	Hyperparameter Tuning

	LAS Robustness Checks
	Continuous Leakage Scores and LAS Metric
	Robustness to Seed and Model Choice

	Alternative Computational Models and Language Modeling Objectives
	Human Quality Rating Collection

	Additional Results and Details for Chapter 6
	Additional Experiments
	Our Model for Initial Experiments
	Conditioning Mechanisms
	Retrieval

	Training Details
	Runtimes.
	Training Hyperparameters and Analysis
	Experiment Confidence Intervals

	Synthetic Task Generative Process

	Additional Results and Details for Chapter 7
	Method Implementation and Hyperparameter Tuning Details
	Replace Functions
	Explanation Methods
	Model Training Details and Experiment Runtimes

	Experimental Details
	Data Preprocessing
	Analysis of Counterfactual Input OOD-ness Details
	Compute Budget Details

	Additional Results
	Discussion

	Additional Results and Details for Chapter 8
	Learned Optimizer Details
	Additional Training Details
	Compute Costs.
	Hyperparameters and Objective Terms.
	Wikidata5m Additional Details.
	LeapOfThought Additional Details

	Noise in Datasets
	Metric Computation and Bootstrap Details
	Additional Results

	Additional Results and Details for Chapter 9
	Experiment Details
	Additional Results
	Robustness Experiments

