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x = Despite modest aspirations its occasional charms are not to be dismissed.
9 = Negative

y = Positive

Ao,

(

LIME

charms +.05

modest +.04
dismissed -.06
occasional -.11
despite -.18

Sum of Words -.26 1

Baseline .24

Est. Probability

-.02

(Ribeiro et al., 2016)
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Motivation

e We have explanations of model behavior
o e.g., feature importance estimates

e \We want to precisely measure explanation quality

e Quality can mean many things
o Building user trust
o ldentifying influence of certain features
o Checking behavior on particular kinds of inputs
o Ensuring models are fair and unbiased
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Motivation

e We have explanations of model behavior
o e.g., feature importance estimates

e \We want to precisely measure explanation quality

e \We use an operational definition of simulatability
(Doshi-Velez and Kim, 2017)

O A model is simulatable when users can predict its outputs

o Explanations communicate one person’s mental model to another

o Simulatability could be useful for deployment decisions, model
debugging, model design
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Proposal: Metric

e Measure the effect of an explanation method on model

simulatability
o Compute user accuracy before and after seeing explanations

Post Sim. Pre Stm. __  Explanation

Accuracy Accuracy  Effect
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Proposal: Experimental Design

e Measure the effect of an explanation method on model
simulatability
e |mportant controls:
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Separate explained instances from test instances

Evaluate the effect of explanations against a baseline of unexplained
examples

Balance data by model correctness and model output
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Proposal: Experimental Design

e Measure the effect of an explanation method on model
simulatability

e |mportant controls:

o Separate explained instances from test instances

o Evaluate the effect of explanations against a baseline of unexplained
examples
Balance data by model correctness and model output

o Force user predictions on all inputs (or penalize abstention)
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e Test 1: forward simulation

Learning Phase
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Proposal: Experimental Design

e Test 2: counterfactual simulation

i Prediction Phase i ( Prediction Phase b
(Pre (Post)

)
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Explanation Methods

e Feature importance estimates

o LIME: local linear approximation (Ribeiro et al., 2016)

o Anchors: if-then probabilistic statements (Ribeiro et al., 2018)
e (Case-based reasoning

o Prototype model: identify similar cases
(Chen et al. 2019; Hase et al. 2019)

e Latent space traversal (counterfactual explanations)

o Decision boundary: cross the decision boundary in data space
(Joshi et al., 2018; Samangouei et al., 2018)

e Composite approach
o Combine above methods
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Explanation Methods

e Feature importance estimates
o LIME, Anchors (Ribeiro et al. 2016; Ribeiro et al. 2018)

o Probabilistic if-then statements
m If P(x) holds, there is a high probability that model will predict y

o Search for Anchors in a multi-armed bandit framework

Anchor
p(§ = Negative | {occasional} C z) > .95
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Explanation Methods

e (Case-based reasoning

o Prototype model: identify similar cases
(Chen et al. 2019; Hase et al. 2019)

o Keep a per-class set of prototype vectors, which are equal to
vector representations of individual training data points

o Compute class scores as the highest similarity score between the
representation of a new data point and the learned prototypes

N

(P rototype

Most similar prototype:
Routine and rather silly.

Similarity score: 9.96 out of 10

Important words: (none selected)

=
\_ J @UNC
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Explanation Methods

e (Case-based reasoning

o Prototype model: identify similar cases
(Chen et al. 2019; Hase et al. 2019)

o Keep a per-class set of prototype vectors, which are equal to
vector representations of individual training data points

o Compute class scores as the highest similarity score between the
representation of a new data point and the learned prototypes

/Prototype )
Most similar prototype:
Routine and rather silly. f (X'L ) c — IMax a (g (X'L ) ] pk)
Similarity score: 9.96 out of 10 Pk = Pc
Important words: (none selected)
N J =n [UNC
@ NLP \\/




Explanation Methods
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e |atent space traversal

o Decision boundary: cross the decision
boundary in data space
(Joshi et al., 2018; Samangouei et al., 2018)
o ldentify a counterfactual by sampling,
then choosing the closest counterfactual
(by edit distance, then Euclidean)

o Greedily select one-word edits that
least changes the evidence, until we
have the full set of edits.

m evidence defined as difference
between the two class scores

Step 0

Step 1

Step 2

20

o

(Decision Boundary

Evidence Margin: -5.21
occasional —»>rare
Evidence Margin: -3.00

modest —» impressive
Evidence Margin: +0.32

Despite impressive aspirations its rare
charms are not to be dismissed.
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4 ™
Input, Label, and Model Output
x = Despite modest aspirations its occasional charms are not to be dismissed.
y = Positive ¢§ = Negative
N\ J
4 N .
LIME /Prototype \(Decision Boundary )
charms +.05 Most similar prototype: Step 0 | Evidence Margin: -5.21
modest +.04 Routine and rather silly.
dismissed -.06 Similarity score: 9.96 out of 10 Step 1 | occasional —»rare
occa51oqal -.11 Important words: (none selected) Evidence Margin: -3.00
despite -.18 . .
S FWords -6 \ /| Step 2 | modest — impressive
um o7 vords - Evidence Margin: +0.32
Baseline .24 -h fAnchor R vidence Vatgin
Est. Probability -.02 \ o : : (o) | Despite impressive aspirations its rare
9 Y 0 1 ) \p(y Negative | {occasional} C z) > '95/ 9 v charms are not to be dismissed. )
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Experimental Results

e Two binary classification tasks with neural models

o Textual: sentiment analysis (Pang et al., 2002)
o Tabular: binary income prediction (Dua and Graff, 2017)
o Counterfactuals are algorithmically constructed

e 2166 responses from 29 undergraduates (in-person tests)

o Quantitative backgrounds
o Passed screening tests (mini task/method lessons with quiz)

e Hypothesis testing done by block bootstrap
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Experimental Results

e F[ull tables in paper

Text Tabular
Method n Pre Change CI P n Pre Change CI P
User Avg. 1144 62.67 - 7.07 - 1022 70.74 - 6.96 -
LIME 190 - 0.99 9.58 .834 179 - 11.25 8.83 014
Anchor 181 - 1.71 9.43 704 215 - 5.01 8.58 234
Prototype 223 - 3.68 9.67 421 192 - 1.68 10.07 11
DB 230 - -1.93 13.25 756 182 - 5.27 10.08 271
Composite 320 - 3.80 11.09 486 254 - 0.33 10.30 952
Forward Simulation Counterfactual Simulation
Method n Pre Change CI P n Pre Change CI D
User Avg. 1103 69.71 - 6.16 - 1063 63.13 - 7.87 -
LIME 190 - 5.70 9.05 197 179 - 525 10.59 309
Anchor 199 - 0.86 10.48 .869 197 - 5.66 7.91 .140
Prototype 223 - -2.64 9.59 .566 192 - 9.53 8.55 .032
DB 205 - -0.92 11.87 .876 207 - 248 11.62 .667

Composite 286 - -2.07 8.51 .618 288 - 7.36 9.38 122
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e LIME improves simulatability for tabular data.
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o (across forward and counterfactual tests)
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Experimental Results

e LIME improves simulatability for tabular data.

o 70.74% — 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
o (across forward and counterfactual tests)

e Prototype model improves counterfactual simulatability.

o 63.13% — 72.66% accuracy, +9.53 (+/- 8.55) ppts, p=.032
o (across datasets)

e Other estimates do not significantly differ from 0 (p <.05).

o Including LIME for text, Prototype for forward sim.,
Anchor, Decision Boundary, and Composite methods
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o Ask users to rate explanations on 1-7 scale
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Experimental Results

e Do user ratings predict explanation effectiveness?

o Ask users to rate explanations on 1-7 scale
o “Does this explanation show me why the system thought what it did?”
o Estimate counterfactual post test correctness from ratings

e Ratings not a significant predictor
o Moving from a rating of 4 to 5 associated with between -2.9 and 5.2
ppt change in expected user accuracy (95% CI for text data)
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Qualitative Analysis

e Success: 3 of 6 Pre correct — 5 of 6 Post correct

Original, predicted positive:
“Pretty much sucks, but has a funny moment or two.”

Counterfactual, predicted positive:
“Mostly just bothers, but looks a funny moment or two.”
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Qualitative Analysis

e Success: 3 of 6 Pre correct — 5 of 6 Post correct

Original, predicted positive:
“Pretty much sucks, but has a funny moment or two.”

Counterfactual, predicted positive:
“Mostly just bothers, but looks a funny moment or two.”

Activated prototype:

“Murders by Numbers isn’t a great movie, but it's a perfectly

acceptable widget.” UNC 7%
NLP L
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Qualitative Analysis

e Failure: 7 of 13 Post correct (no improvements)

Original, predicted positive:
“A bittersweet film, simple in form but rich with human events.”

Counterfactual, predicted negative:
“A teary film, simple in form but vibrant with devoid events.”
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Qualitative Analysis

e Failure: 7 of 13 Post correct (no improvements)

Original, predicted positive:
“A bittersweet film, simple in form but rich with human events.”

Counterfactual, predicted negative:
“A teary film, simple in form but vibrant with devoid events.”

e \Was “bittersweet” necessary? Is vibrant considered similar to “rich”? If a

sentence has the same syntactic structure, will it get the same preglction? _
mil e
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Concluding Thoughts

e \With the proper controls, simulation tests provide a
general purpose evaluation procedure.

e Explanation methods could be improved:

o Best tabular Post accuracy: 81.99%
o Best text Post accuracy: 66.47%
o (baseline: 50%)
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Concluding Thoughts

e \With the proper controls, simulation tests provide a
general purpose evaluation procedure.

e Explanation methods could be improved:

o Distinguish between sufficient and necessary factors

o Clearly point to decision-relevant similarities between new inputs and
known cases

o Use feature spaces appropriate to the problem
(individual words probably a suboptimal feature space)
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Our follow-up work

e Natural language explanations

o Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in
Natural Language?

e Explaining models in terms of influential data

o FastlF: Scalable Influence Functions for Efficient Model Interpretation and Debugging

e Feature importance explanations

o Search Methods for Sufficient, Socially-Aligned Feature Importance Explanations with In-Distribution
Counterfactuals

e Teaching models via explanations

o When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of
Explanation Data
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Others’ follow-up work

e Explanations in a human-Al team context

o Does the Whole Exceed its Parts? The Effect of Al Explanations on Complementary Team
Performance

e More theory: faithfulness, social alignment of explanations

o  Aligning Faithful Interpretations with their Social Attribution

e Automating our evaluation (as a model-based evaluation)

o Evaluating Explanations: How much do explanations from the teacher aid students?

e Counterfactual explanations for NLP

o Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models
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Simulation Tests in RL

e Explainable Reinforcement Learning Through a Causal

Lens

o Ask people to predict what an agent will do next, based on varying
kinds of explanations

e More explainable RL work summarized in our blog post:

o Opinions on Interpretable Machine Learning and 70 Summaries of
Recent Papers
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Thank You!

Code: https://qithub.com/peterbhase/InterpretableNL P-ACL 2020

Contact Info:

Peter Hase
peter@cs.unc.edu
https://peterbhase.qithub.io

m

UNC /¥
NLP


https://github.com/peterbhase/InterpretableNLP-ACL2020
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