Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?

Peter Hase and Mohit Bansal peter@cs.unc.edu, mbansal@cs.unc.edu

ACL 2020

Talk Outline

- Motivation
- Proposal
 - Metric
 - Experimental Design
- Explanation Methods
- Results
- Qualitative Analysis
- Concluding Thoughts
- Follow-up Work

- We have explanations of model behavior
 - e.g., feature importance estimates

Input, Label, and Model Output

x = Despite modest aspirations its occasional charms are not to be dismissed.<math>y = Positive $\hat{y} = Negative$

UNC NLP

- We have explanations of model behavior
 - e.g., feature importance estimates
- We want to precisely measure explanation quality

- We have explanations of model behavior
 - e.g., feature importance estimates
- We want to precisely measure explanation quality
- Quality can mean many things
 - Building user trust
 - Identifying influence of certain features
 - Checking behavior on particular kinds of inputs
 - Ensuring models are fair and unbiased

- We have explanations of model behavior
 - e.g., feature importance estimates
- We want to precisely measure explanation quality
- We use an operational definition of *simulatability* (Doshi-Velez and Kim, 2017)
 - A model is simulatable when users can predict its outputs

- We have explanations of model behavior
 - e.g., feature importance estimates
- We want to precisely measure explanation quality
- We use an operational definition of *simulatability* (Doshi-Velez and Kim, 2017)
 - A model is simulatable when users can predict its outputs
 - Explanations communicate one person's mental model to another
 - Simulatability could be useful for deployment decisions, model debugging, model design

Proposal: Metric

• Measure the effect of an explanation method on model simulatability

Proposal: Metric

- Measure the effect of an explanation method on model simulatability
 - Compute user accuracy before and after seeing explanations

- Measure the effect of an explanation method on model simulatability
- Important controls:

- Measure the effect of an explanation method on model simulatability
- Important controls:
 - Separate explained instances from test instances

- Measure the effect of an explanation method on model simulatability
- Important controls:
 - Separate explained instances from test instances
 - Evaluate the effect of explanations against a baseline of unexplained examples

- Measure the effect of an explanation method on model simulatability
- Important controls:
 - Separate explained instances from test instances
 - Evaluate the effect of explanations against a baseline of unexplained examples
 - Balance data by model correctness and model output

- Measure the effect of an explanation method on model simulatability
- Important controls:
 - Separate explained instances from test instances
 - Evaluate the effect of explanations against a baseline of unexplained examples
 - Balance data by model correctness and model output
 - Force user predictions on all inputs (or penalize abstention)

• Test 1: forward simulation

- e : Explanation
- \hat{y} : Model prediction
- $ilde{y}$: Human simulation

• Test 2: counterfactual simulation

- e : Explanation
- \hat{y} : Model prediction
- $ilde{y}$: Human simulation
- x_c : Counterfactual input
- \hat{y}_c : Counterfactual model prediction

- Feature importance estimates
 - LIME: local linear approximation (Ribeiro et al., 2016)
 - Anchors: if-then probabilistic statements (Ribeiro et al., 2018)

- Feature importance estimates
 - LIME: local linear approximation (Ribeiro et al., 2016)
 - Anchors: if-then probabilistic statements (Ribeiro et al., 2018)
- Case-based reasoning
 - Prototype model: identify similar cases (Chen et al. 2019; Hase et al. 2019)

- Feature importance estimates
 - LIME: local linear approximation (Ribeiro et al., 2016)
 - Anchors: if-then probabilistic statements (Ribeiro et al., 2018)
- Case-based reasoning
 - Prototype model: identify similar cases (Chen et al. 2019; Hase et al. 2019)
- Latent space traversal (counterfactual explanations)
 - Decision boundary: cross the decision boundary in data space (Joshi et al., 2018; Samangouei et al., 2018)

- Feature importance estimates
 - LIME: local linear approximation (Ribeiro et al., 2016)
 - Anchors: if-then probabilistic statements (Ribeiro et al., 2018)
- Case-based reasoning
 - Prototype model: identify similar cases (Chen et al. 2019; Hase et al. 2019)
- Latent space traversal (counterfactual explanations)
 - Decision boundary: cross the decision boundary in data space (Joshi et al., 2018; Samangouei et al., 2018)
- Composite approach
 - Combine above methods

P. Hase & M. Bansal

Input, Label, and Model Output

x = Despite modest aspirations its occasional charms are not to be dismissed.<math>y = Positive $\hat{y} = Negative$

- Feature importance estimates
 - LIME, Anchors (Ribeiro et al. 2016; Ribeiro et al. 2018)
 - Probabilistic if-then statements
 - If P(x) holds, there is a high probability that model will predict y
 - Search for Anchors in a multi-armed bandit framework

- Case-based reasoning
 - Prototype model: identify similar cases (Chen et al. 2019; Hase et al. 2019)
 - Keep a per-class set of prototype vectors, which are equal to vector representations of individual training data points
 - Compute class scores as the highest similarity score between the representation of a new data point and the learned prototypes

Prototype

Most similar prototype: Routine and rather silly. Similarity score: 9.96 out of 10

Important words: (none selected)

- Case-based reasoning
 - Prototype model: identify similar cases (Chen et al. 2019; Hase et al. 2019)
 - Keep a per-class set of prototype vectors, which are equal to vector representations of individual training data points
 - Compute class scores as the highest similarity score between the representation of a new data point and the learned prototypes

Prototype

Most similar prototype: Routine and rather silly. Similarity score: 9.96 out of 10

Important words: (none selected)

$$f(\mathbf{x}_i)_c = \max_{\mathbf{p}_k \in P_c} a(g(\mathbf{x}_i), \mathbf{p}_k)$$

- Latent space traversal
 - Decision boundary: cross the decision boundary in data space (Joshi et al., 2018; Samangouei et al., 2018)
 - Identify a counterfactual by sampling, then choosing the closest counterfactual (by edit distance, then Euclidean)
 - Greedily select one-word edits that least changes the *evidence*, until we have the full set of edits.
 - evidence defined as difference between the two class scores

Decis	ion Boundary
Step 0	Evidence Margin: -5.21
Step 1	occasional → rare Evidence Margin: -3.00
Step 2	modest → impressive Evidence Margin: +0.32
$x^{(c)}$	Despite <i>impressive</i> aspirations its <i>rare</i> charms are not to be dismissed.

- Two binary classification tasks with neural models
 - Textual: sentiment analysis (Pang et al., 2002)
 - Tabular: binary income prediction (Dua and Graff, 2017)
 - Counterfactuals are algorithmically constructed

- Two binary classification tasks with neural models
 - Textual: sentiment analysis (Pang et al., 2002)
 - Tabular: binary income prediction (Dua and Graff, 2017)
 - Counterfactuals are algorithmically constructed
- 2166 responses from 29 undergraduates (in-person tests)
 - Quantitative backgrounds
 - Passed screening tests (mini task/method lessons with quiz)

- Two binary classification tasks with neural models
 - Textual: sentiment analysis (Pang et al., 2002)
 - Tabular: binary income prediction (Dua and Graff, 2017)
 - Counterfactuals are algorithmically constructed
- 2166 responses from 29 undergraduates (in-person tests)
 - Quantitative backgrounds
 - Passed screening tests (mini task/method lessons with quiz)
- Hypothesis testing done by block bootstrap

• Full tables in paper

	Text					Tabular				
Method	\overline{n}	Pre	Change	CI	p	\overline{n}	Pre	Change	CI	p
User Avg.	1144	62.67	-	7.07		1022	70.74	-	6.96	-
LIME	190		0.99	9.58	.834	179		11.25	8.83	.014
Anchor	181	-	1.71	9.43	.704	215	-	5.01	8.58	.234
Prototype	223	-	3.68	9.67	.421	192	-	1.68	10.07	.711
DB	230		-1.93	13.25	.756	182	-	5.27	10.08	.271
Composite	320	-	3.80	11.09	.486	254		0.33	10.30	.952
	Forward Simulation					Counterfactual Simulation				
Method	\overline{n}	Pre	Change	CI	p	n	Pre	Change	CI	p
User Avg.	1103	69.71	-	6.16	-	1063	63.13	-	7.87	-
LIME	190	-	5.70	9.05	.197	179	-	5.25	10.59	.309
A	199	-	0.86	10.48	.869	197	-	5.66	7.91	.140
Anchor			2 ()	0 50	.566	192	-	9.53	8.55	.032
Prototype	223	-	-2.64	9.59	.500	1/2		1.00	0.00	.052
	223 205	-	-2.64 -0.92	$9.59 \\ 11.87$.876	207	-	2.48	11.62	.667

- LIME improves simulatability for tabular data.
 - 70.74% → 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
 - (across forward and counterfactual tests)

- LIME improves simulatability for tabular data.
 - 70.74% → 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
 - (across forward and counterfactual tests)
- Prototype model improves counterfactual simulatability.
 - 63.13% → 72.66% accuracy, +9.53 (+/- 8.55) ppts, *p*=.032
 - (across datasets)

- LIME improves simulatability for tabular data.
 - 70.74% → 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
 - (across forward and counterfactual tests)
- Prototype model improves counterfactual simulatability.
 - 63.13% → 72.66% accuracy, +9.53 (+/- 8.55) ppts, *p*=.032
 - (across datasets)
- Other estimates do not significantly differ from 0 (p < .05).
 - Including LIME for text, Prototype for forward sim.,
 Anchor, Decision Boundary, and Composite methods

- Do user ratings predict explanation effectiveness?
 - Ask users to rate explanations on 1-7 scale
 - "Does this explanation show me why the system thought what it did?"
 - Estimate counterfactual post test correctness from ratings

- Do user ratings predict explanation effectiveness?
 - Ask users to rate explanations on 1-7 scale
 - "Does this explanation show me why the system thought what it did?"
 - Estimate counterfactual post test correctness from ratings
- Ratings not a significant predictor
 - Moving from a rating of 4 to 5 associated with between -2.9 and 5.2 ppt change in expected user accuracy (95% CI for text data)

• Success: 3 of 6 Pre correct \rightarrow 5 of 6 Post correct

Original, predicted **positive**:

"Pretty much sucks, but has a funny moment or two."

Counterfactual, predicted **positive**:

"Mostly just bothers, but looks a funny moment or two."

• Success: 3 of 6 Pre correct \rightarrow 5 of 6 Post correct

Original, predicted **positive**:

"Pretty much sucks, but has a funny moment or two."

Counterfactual, predicted **positive**:

"Mostly just bothers, but looks a funny moment or two."

Activated prototype:

"Murders by Numbers isn't a great movie, but it's a perfectly acceptable widget."

• Failure: 7 of 13 Post correct (no improvements)

Original, predicted **positive**:

"A bittersweet film, simple in form but rich with human events."

Counterfactual, predicted **negative**:

"A teary film, simple in form but vibrant with devoid events."

• Failure: 7 of 13 Post correct (no improvements)

Original, predicted **positive**:

"A bittersweet film, simple in form but rich with human events."

Counterfactual, predicted **negative**:

"A teary film, simple in form but vibrant with devoid events."

 Was "bittersweet" necessary? Is vibrant considered similar to "rich"? If a sentence has the same syntactic structure, will it get the same prediction?

Concluding Thoughts

• With the proper controls, simulation tests provide a general purpose evaluation procedure.

- Explanation methods could be improved:
 - Best tabular Post accuracy: 81.99%
 - Best text Post accuracy: 66.47%
 - (baseline: 50%)

Concluding Thoughts

• With the proper controls, simulation tests provide a general purpose evaluation procedure.

- Explanation methods could be improved:
 - Distinguish between sufficient and necessary factors
 - Clearly point to decision-relevant similarities between new inputs and known cases
 - Use feature spaces appropriate to the problem (individual words probably a suboptimal feature space)

• Natural language explanations

 Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?

• Natural language explanations

 Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?

• Explaining models in terms of influential data

• FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging

• Natural language explanations

 Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?

• Explaining models in terms of influential data

• FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging

• Feature importance explanations

 Search Methods for Sufficient, Socially-Aligned Feature Importance Explanations with In-Distribution Counterfactuals

• Natural language explanations

 Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?

• Explaining models in terms of influential data

• FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging

• Feature importance explanations

 Search Methods for Sufficient, Socially-Aligned Feature Importance Explanations with In-Distribution Counterfactuals

• Teaching models via explanations

 When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data

- Explanations in a human-AI team context
 - Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance

- Explanations in a human-AI team context
 - Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
- More theory: faithfulness, social alignment of explanations
 - Aligning Faithful Interpretations with their Social Attribution

- Explanations in a human-AI team context
 - Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
- More theory: faithfulness, social alignment of explanations
 - Aligning Faithful Interpretations with their Social Attribution
- Automating our evaluation (as a model-based evaluation)
 - Evaluating Explanations: How much do explanations from the teacher aid students?

- Explanations in a human-AI team context
 - Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
- More theory: faithfulness, social alignment of explanations
 - Aligning Faithful Interpretations with their Social Attribution
- Automating our evaluation (as a model-based evaluation)
 - Evaluating Explanations: How much do explanations from the teacher aid students?
- Counterfactual explanations for NLP
 - Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models

Simulation Tests in RL

- Explainable Reinforcement Learning Through a Causal Lens
 - Ask people to predict what an agent will do next, based on varying kinds of explanations

Simulation Tests in RL

- Explainable Reinforcement Learning Through a Causal Lens
 - Ask people to predict what an agent will do next, based on varying kinds of explanations
- More explainable RL work summarized in our blog post:
 - Opinions on Interpretable Machine Learning and 70 Summaries of Recent Papers

P. Hase & M. Bansal

Thank You!

Code: <u>https://github.com/peterbhase/InterpretableNLP-ACL2020</u>

Contact Info:

Peter Hase peter@cs.unc.edu <u>https://peterbhase.github.io</u>

