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Motivation
● We have explanations of model behavior

○ e.g., feature importance estimates

● We want to precisely measure explanation quality

● Quality can mean many things
○ Building user trust 
○ Identifying influence of certain features
○ Checking behavior on particular kinds of inputs
○ Ensuring models are fair and unbiased
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Motivation
● We have explanations of model behavior

○ e.g., feature importance estimates

● We want to precisely measure explanation quality

● We use an operational definition of simulatability 
(Doshi-Velez and Kim, 2017)
○ A model is simulatable when users can predict its outputs 
○ Explanations communicate one person’s mental model to another
○ Simulatability could be useful for deployment decisions, model 

debugging, model design
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Proposal: Experimental Design
● Measure the effect of an explanation method on model 

simulatability
● Important controls:

○ Separate explained instances from test instances
○ Evaluate the effect of explanations against a baseline of unexplained 

examples
○ Balance data by model correctness and model output
○ Force user predictions on all inputs (or penalize abstention)
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Proposal: Experimental Design
● Test 2: counterfactual simulation
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Explanation Methods
● Feature importance estimates

○ LIME: local linear approximation (Ribeiro et al., 2016)
○ Anchors: if-then probabilistic statements (Ribeiro et al., 2018)

● Case-based reasoning
○ Prototype model: identify similar cases 

(Chen et al. 2019; Hase et al. 2019)

● Latent space traversal (counterfactual explanations)
○ Decision boundary: cross the decision boundary in data space

 (Joshi et al., 2018; Samangouei et al., 2018)

● Composite approach
○ Combine above methods
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Explanation Methods
● Feature importance estimates

○ LIME, Anchors (Ribeiro et al. 2016; Ribeiro et al. 2018)

○ Probabilistic if-then statements
■ If P(x) holds, there is a high probability that model will predict y

○ Search for Anchors in a multi-armed bandit framework
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(Chen et al. 2019; Hase et al. 2019)

○ Keep a per-class set of prototype vectors, which are equal to 
vector representations of individual training data points

○ Compute class scores as the highest similarity score between the 
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Explanation Methods
● Latent space traversal

○ Decision boundary: cross the decision 
boundary in data space
 (Joshi et al., 2018; Samangouei et al., 2018)

○ Identify a counterfactual by sampling, 
then choosing the closest counterfactual 
(by edit distance, then Euclidean)

○ Greedily select one-word edits that 
least changes the evidence, until we 
have the full set of edits.
■ evidence defined as difference 

between the two class scores
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Experimental Results
● Two binary classification tasks with neural models

○ Textual: sentiment analysis (Pang et al., 2002)
○ Tabular: binary income prediction (Dua and Graff, 2017)
○ Counterfactuals are algorithmically constructed
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Experimental Results
● Two binary classification tasks with neural models

○ Textual: sentiment analysis (Pang et al., 2002)
○ Tabular: binary income prediction (Dua and Graff, 2017)
○ Counterfactuals are algorithmically constructed

● 2166 responses from 29 undergraduates (in-person tests)
○ Quantitative backgrounds
○ Passed screening tests (mini task/method lessons with quiz)

● Hypothesis testing done by block bootstrap

P. Hase & M. Bansal



Experimental Results
● Full tables in paper
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Experimental Results
● LIME improves simulatability for tabular data. 

○ 70.74% → 81.99% accuracy, +11.25 (+/- 8.83) ppts, p=.014
○ (across forward and counterfactual tests)

● Prototype model improves counterfactual simulatability.
○ 63.13% → 72.66% accuracy, +9.53 (+/- 8.55) ppts, p=.032
○ (across datasets)

● Other estimates do not significantly differ from 0 (p <.05).
○ Including LIME for text, Prototype for forward sim.,

Anchor, Decision Boundary, and Composite methods
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Experimental Results
● Do user ratings predict explanation effectiveness?

○ Ask users to rate explanations on 1-7 scale
○ “Does this explanation show me why the system thought what it did?” 
○ Estimate counterfactual post test correctness from ratings
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Experimental Results
● Do user ratings predict explanation effectiveness?

○ Ask users to rate explanations on 1-7 scale
○ “Does this explanation show me why the system thought what it did?” 
○ Estimate counterfactual post test correctness from ratings

● Ratings not a significant predictor
○ Moving from a rating of 4 to 5 associated with between -2.9 and 5.2 

ppt change in expected user accuracy (95% CI for text data)
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Qualitative Analysis
● Success: 3 of 6 Pre correct → 5 of 6 Post correct

Original, predicted positive:
“Pretty much sucks, but has a funny moment or two.”

Counterfactual, predicted positive:
“Mostly just bothers, but looks a funny moment or two.”
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Qualitative Analysis
● Success: 3 of 6 Pre correct → 5 of 6 Post correct

Original, predicted positive:
“Pretty much sucks, but has a funny moment or two.”

Counterfactual, predicted positive:
“Mostly just bothers, but looks a funny moment or two.”

Activated prototype:
“Murders by Numbers isn’t a great movie, but it’s a perfectly 
acceptable widget.”
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Qualitative Analysis
● Failure: 7 of 13 Post correct (no improvements)

Original, predicted positive:
“A bittersweet film, simple in form but rich with human events.”

Counterfactual, predicted negative:
“A teary film, simple in form but vibrant with devoid events.”
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Qualitative Analysis
● Failure: 7 of 13 Post correct (no improvements)

Original, predicted positive:
“A bittersweet film, simple in form but rich with human events.”

Counterfactual, predicted negative:
“A teary film, simple in form but vibrant with devoid events.”

● Was “bittersweet” necessary? Is vibrant considered similar to “rich”? If a 
sentence has the same syntactic structure, will it get the same prediction?
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Concluding Thoughts

● With the proper controls, simulation tests provide a 
general purpose evaluation procedure.

● Explanation methods could be improved:
○ Best tabular Post accuracy: 81.99%
○ Best text Post accuracy: 66.47%
○ (baseline: 50%)
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Concluding Thoughts

● With the proper controls, simulation tests provide a 
general purpose evaluation procedure.

● Explanation methods could be improved:
○ Distinguish between sufficient and necessary factors
○ Clearly point to decision-relevant similarities between new inputs and 

known cases
○ Use feature spaces appropriate to the problem 

(individual words probably a suboptimal feature space)
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Our follow-up work
● Natural language explanations

○ Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in 
Natural Language?

● Explaining models in terms of influential data
○ FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging

● Feature importance explanations
○ Search Methods for Sufficient, Socially-Aligned Feature Importance Explanations with In-Distribution 

Counterfactuals

● Teaching models via explanations
○ When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of 

Explanation Data
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● Explanations in a human-AI team context
○ Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team 

Performance

● More theory: faithfulness, social alignment of explanations
○ Aligning Faithful Interpretations with their Social Attribution

● Automating our evaluation (as a model-based evaluation)
○ Evaluating Explanations: How much do explanations from the teacher aid students?

● Counterfactual explanations for NLP
○ Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models



Simulation Tests in RL

● Explainable Reinforcement Learning Through a Causal 
Lens
○ Ask people to predict what an agent will do next, based on varying 

kinds of explanations
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Simulation Tests in RL

● Explainable Reinforcement Learning Through a Causal 
Lens
○ Ask people to predict what an agent will do next, based on varying 

kinds of explanations

● More explainable RL work summarized in our blog post: 
○ Opinions on Interpretable Machine Learning and 70 Summaries of 

Recent Papers

P. Hase & M. Bansal



Code: https://github.com/peterbhase/InterpretableNLP-ACL2020 

Contact Info:
Peter Hase
peter@cs.unc.edu
https://peterbhase.github.io  

Thank You!
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https://github.com/peterbhase/InterpretableNLP-ACL2020
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