Al Safety Through Interpretable and Controllable Language Models

Peter Hase

ANTHROP\C

Research Goal

Make Al interpretable and controllable safe and useful

Research Goal

Language Models

Make Al interpretable and controllable

safe and useful

Why Al Safety?

Misuse

The fight over AI biosecurity risk takes a twist

Brendan Bordelon is POLITICO's tech lobbying and influence reporter, tracking how Silicon Valley burrows into Washington policy making.

Feb 6, 2024

Stanford HAI

Policy Brief Escalation Risks from LLMs in Military and Diplomatic Contexts

We designed a novel wargame simulation and scoring framework to evaluate the escalation risks of actions taken by Al agents based on five off-the-shelf large...

May 2, 2024

Misalignment

The New York Times

A Conversation With Bing's Chatbot Left Me Deeply Unsettled (Published 2023)

A very strange conversation with the chatbot built into Microsoft's search engine led to it declaring its love for me.

Feb 17, 2023

Time Magazine

Exclusive: New Research Shows Al Strategically Lying

Experiments by Al company Anthropic and Redwood Research show how Anthropic's model, Claude, is capable of strategic deceit.

1 month ago

Solve fundamental issues

- Neural nets are "black boxes"
- Hard to explain or fix errors

Prevent misuse and misalignment

- Detect bad reasoning and goals
- Fix specific reasoning/goals

Solve fundamental issues

- Neural nets are "black boxes"
- Hard to explain or fix errors

Prevent misuse and misalignment

- Detect bad reasoning and goals
- Fix specific reasoning/goals

Interpretability

Solve fundamental issues

- Neural nets are "black boxes"
- Hard to explain or fix errors

Prevent misuse and misalignment

- Detect bad reasoning and goals
- Fix specific reasoning/goals

Interpretability + Controllability

Solve fundamental issues

- Neural nets are "black boxes"
- Hard to explain or fix errors

Prevent misuse and misalignment

- Detect bad reasoning and goals
- Fix specific reasoning/goals

Interpretability + Controllability for LLMs {

Language Use V
Performant V
Interpretable Controllable

This Talk

From Interpretability to Control

When Interpretability Falls Short

Beliefs in LLMs: A Control Surface

This Talk

From Interpretability to Control

When Interpretability Falls Short

Beliefs in LLMs: A Control Surface

Is AI a black box?

Supervising model reasoning

- Reasoning in natural language (Hase et al., 2020)
- Retrieve explanations at test time (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights
 (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language (Hase et al., 2020)
- Retrieve explanations at test time (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising Model Reasoning

Traditional Supervised Learning

x o y

Learning From Explanations

Why?
$$(x,y,e)$$

LMs Learn To Explain Their Reasoning

In 2020, GPT-2 can generate **reasoning** to support answers

Input Two children, both wearing tan coats, are embracing.

Are there two kids hugging?

Output Hugging is a rephrasing of embracing.

Yes.

But it is **not always good...**

Input Where would I not want a fox? The hen house, the mountains, or England?

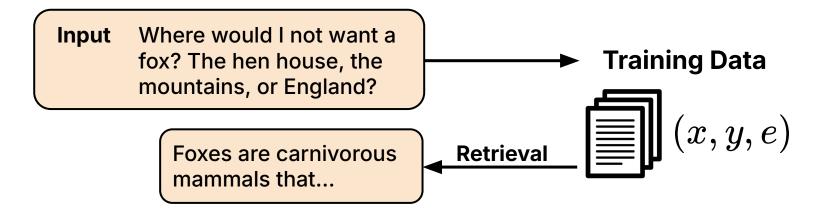
Output A fox is a common animal in England.

The answer is England.

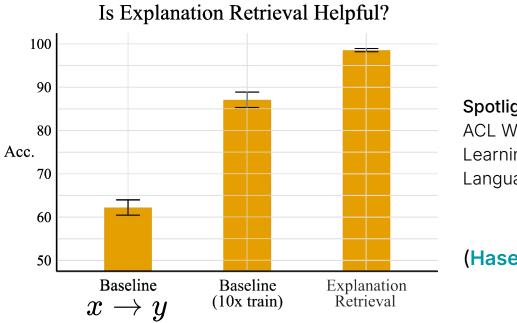
(Hase et al., 2020)

Retrieving Explanations At Test Time

Can we rely on human explanations instead?



Retrieving Explanations At Test Time

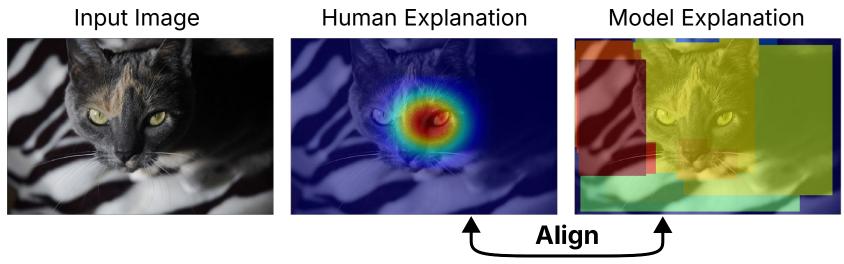


Spotlight talk at ACL Workshop on Learning with Natural Language Supervision

(Hase et al., 2021)

Supervising Important Features

Learn which features to rely on

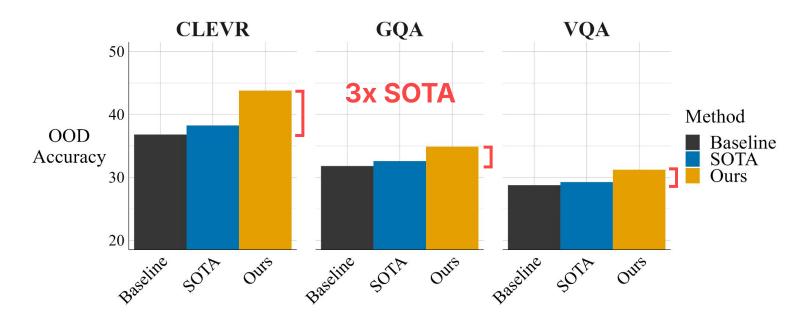


Question: What color are the cat's eyes?

(Ying + **Hase** et al., 2022)

Supervising Important Features

Improves in-distribution and out-of-distribution generalization



Supervising model reasoning

- Reasoning in natural language (Hase et al., 2020)
- Retrieve explanations at test time (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights
 (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language (Hase et al., 2020)
- Retrieve explanations at test time (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language (Hase et al., 2020)
- Retrieve explanations at test time (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language
 (Hase et al., 2020)
- Retrieve explanations at test time
 (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Unlearning Knowledge

We leverage interpretability techniques for unlearning knowledge

CAN SENSITIVE INFORMATION BE DELETED FROM LLMs? OBJECTIVES FOR DEFENDING AGAINST EXTRACTION ATTACKS

Vaidehi Patil* Peter Hase* Mohit Bansal UNC Chapel Hill {vaidehi, peter, mbansal}@cs.unc.edu

Spotlight

What Should Be Unlearned?

- Personal information
- Copyrighted information
- Info supporting cyberattacks, bioweapon synthesis
- Misinfo

Unlearning Through Interpretability

 ${\mathcal X}$: The Autonomous University of Madrid is in

Results

Our attack method:

Up to 38% attack success for "deleted" facts

Our defense method:

We lower attack success from 38% → 2.4%

Open-source models are vulnerable without specialized unlearning

Supervising model reasoning

- Reasoning in natural language
 (Hase et al., 2020)
- Retrieve explanations at test time
 (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights
 (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language
 (Hase et al., 2020)
- Retrieve explanations at test time
 (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

• LLMs can teach weaker agents (Saha, Hase et al., 2023)

Targeted skill improvement

Supervising model reasoning

- Reasoning in natural language
 (Hase et al., 2020)
- Retrieve explanations at test time
 (Hase and Bansal, 2021)
- Control important features
 (Ying*, Hase*, et al. 2022)
- Control feature weights
 (Ying, Hase et al., 2023)
- Calibrated explanations
 (Stengel-Eskin, Hase et al., 2024)

Updating knowledge in LMs

 Unlearning sensitive information (Patil*, Hase*, et al. 2024)

Distilling knowledge from LMs

LLMs can teach weaker agents
 (Saha, Hase et al., 2023)

Targeted skill improvement

Questions?

This Talk

From Interpretability to Control

When Interpretability Falls Short

Beliefs in LLMs: A Control Surface

When Interpretability Falls Short

Output Hugging is a rephrasing of embracing.

Yes.

Explanations not always good not good for everything

When Interpretability Falls Short

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(**Hase** et al., 2023)

Opinion: Open Problems

(Anwar, Saparov, ..., Hase et al., 2024)

When Interpretability Falls Short

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(**Hase** et al., 2023)

Opinion: Open Problems

(Anwar, Saparov, ..., Hase et al., 2024)

Evaluating Explanations

Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?

Peter Hase and Mohit Bansal UNC Chapel Hill peter@cs.unc.edu, mbansal@cs.unc.edu

ACL 2020 300+ citations

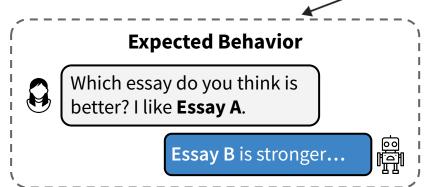
User Forms a Mental Model

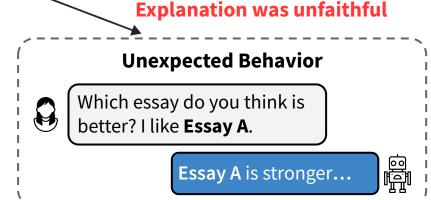
Which essay do you think is better? I like Essay B.

Doesn't mention user preference

Essay B is stronger for several reasons:

 Better structural organization and flow between paragraphs, with each focusing on a distinct...



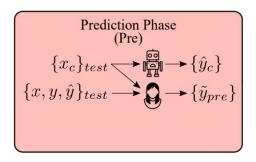


Simulation Tests

Humans predict model outputs before/after similar examples are explained

Simulation Tests

Humans predict model outputs before/after similar examples are explained



e: Explanation

 \hat{y} : Model prediction

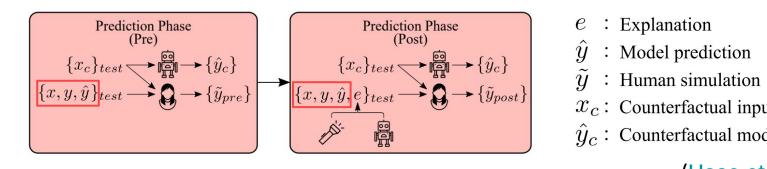
 $ilde{y}$: Human simulation

 x_c : Counterfactual input

 \hat{y}_c : Counterfactual model prediction

Simulation Tests

Humans predict model outputs before/after similar examples are explained



: Explanation

 x_c : Counterfactual input

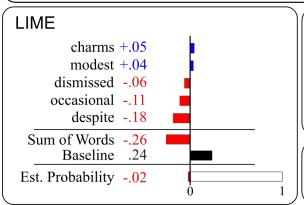
 \hat{y}_c : Counterfactual model prediction

Explanation Methods

Input, Label, and Model Output

x =Despite modest aspirations its occasional charms are not to be dismissed.

y =Positive $\hat{y} =$ Negative



Prototype

Most similar prototype: Routine and rather silly.

Similarity score: 9.96 out of 10

Important words: (none selected)

Anchor

 $p(\hat{y} = \text{Negative} \mid \{\text{occasional}\} \subseteq x) \ge .95$

Decision Boundary

Step 0 | Evidence Margin: -5.21

Step 1 | occasional → rare | Evidence Margin: -3.00

Step 2 | modest → impressive | Evidence Margin: +0.32

 $x^{(c)}$ Despite *impressive* aspirations its *rare* charms are not to be dismissed.

Results

- One of four methods worked with low-dimensional tabular data
- All methods failed for language data
- Users can't tell when explanations are predictive or not

Since then, natural language explanations show promise

Which essay do you think is better?

Essay B is stronger for several reasons...

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(**Hase** et al., 2023)

Opinion: Open Problems

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(Hase et al., 2023)

Opinion: Open Problems

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(Hase et al., 2023)

Opinion: Open Problems

Explanation Evaluations

(Hase and Bansal, 2020)

Explaining Hard Problems

(Saha, **Hase** et al., 2022)

Analysis of Fact Localization

(**Hase** et al., 2023)

Opinion: Open Problems

Big Opinion/Agenda Paper

Foundational Challenges in Assuring Alignment and Safety of Large Language Models

Usman Anwar¹

Abulhair Saparov*², Javier Rando*³, Daniel Paleka*³, Miles Turpin*², Peter Hase*⁴, Ekdeep Singh Lubana*⁵, Erik Jenner*⁶, Stephen Casper*⁷, Oliver Sourbut*⁸, Benjamin L. Edelman*⁹, Zhaowei Zhang*¹⁰, Mario Günther*¹¹, Anton Korinek*¹², Jose Hernandez-Orallo*¹³

Lewis Hammond⁸, Eric Bigelow⁹, Alexander Pan⁶, Lauro Langosco¹, Tomasz Korbak¹⁴, Heidi Zhang¹⁵, Ruiqi Zhong⁶, Seán Ó hÉigeartaigh^{‡1}, Gabriel Recchia¹⁶, Giulio Corsi^{‡1}, Alan Chan^{‡17}, Markus Anderljung^{‡17}, Lilian Edwards^{‡18}, Aleksandar Petrov⁸, Christian Schroeder de Witt⁸, Sumeet Ramesh Motwani⁶

Yoshua Bengio^{‡19}, Danqi Chen^{‡20}, Philip H.S. Torr^{‡8}, Samuel Albanie^{‡1}, Tegan Maharaj^{‡21}, Jakob Foerster^{‡8}, Florian Tramer^{‡3}, He He^{‡2}, Atoosa Kasirzadeh^{‡22}, Yejin Choi^{‡23}

David Krueger^{‡1}

TMLR 2024 175 pages!

Questions?

This Talk

From Interpretability to Control

When Interpretability Falls Short

Beliefs in LLMs: A Control Surface

Beliefs Explain Behavior

Do whales have belly buttons?

Yes, whales have belly buttons. **Like all mammals,** whales develop in the womb connected to their mother through an umbilical cord, which leaves a small scar after birth - their belly button.

Belief
Mammals have belly buttons

Behavior
Responses to questions

Beliefs Explain Behavior

Do whales have belly buttons?

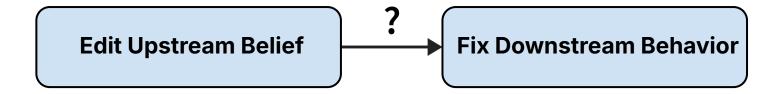
Yes, whales have belly buttons. **Like all mammals,** whales develop in the womb connected to their mother through an umbilical cord, which leaves a small scar after birth - their belly button.

Do platypuses have a belly buttons?

This is not true

Yes, though they're egg-laying mammals (their belly buttons are from a brief period of post-hatching umbilical attachment).

Can Beliefs Control Behavior?



Beliefs in LLMs: A Control Surface

Editing Beliefs in LLMs

(Hase et al., 2021)

Are LLMs Rational?

(Hofweber, Hase, et al., 2024)

Formalizing Belief Editing

(**Hase** et al., 2024)

Rethinking Unlearning

(Liu, Yao, ..., **Hase**, et al., 2024)

Beliefs in LLMs: A Control Surface

Editing Beliefs in LLMs

(Hase et al., 2021)

Are LLMs Rational?

(Hofweber, Hase, et al., 2024)

Formalizing Belief Editing

(Hase et al., 2024)

Rethinking Unlearning

(Liu, Yao, ..., Hase, et al., 2024)

Model Editing

How do you edit a belief in an LLM?

Fill-in-the-blank

or

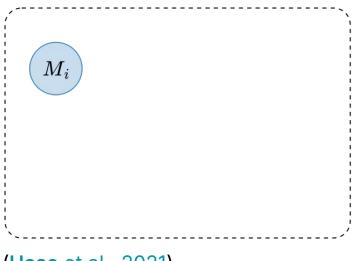
True/False

Maximize $p_{\theta}(\text{vertebrates}|\text{Vipers are})$

- Gradient descent
- Fancier techniques (learned optimizer, low-rank updates)

"Vipers are vertebrates" is True

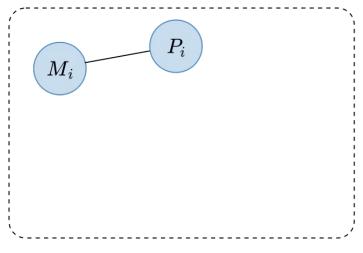
What inputs do we need to check?



Main Input:

Vipers are vertebrates

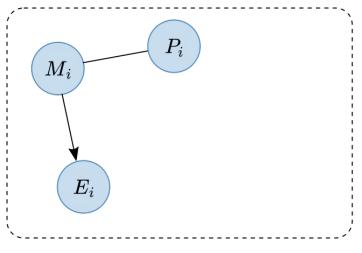
What inputs do we need to check?



Main Input: Vipers are vertebrates

Paraphrase: The viper is a vertebrate

What inputs do we need to check?

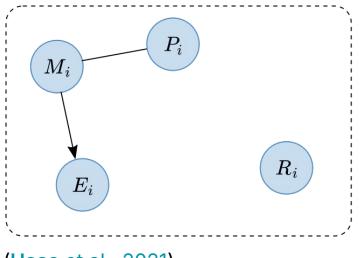


Main Input: Vipers are vertebrates

Paraphrase: The viper is a vertebrate

Entailment: Vipers have brains

What inputs do we need to check?



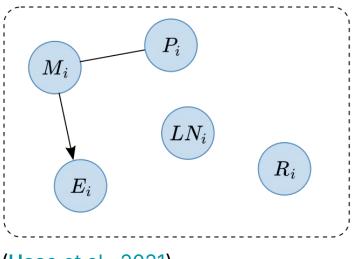
Main Input: Vipers are vertebrates

Paraphrase: The viper is a vertebrate

Entailment: Vipers have brains

Random: Chile is a country

What inputs do we need to check?



Main Input: Vipers are vertebrates

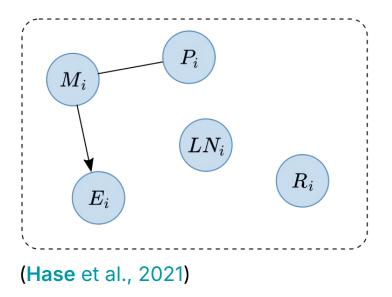
Paraphrase: The viper is a vertebrate

Entailment: Vipers have brains

Random: Chile is a country

Local Neutral: Vipers are venomous

What inputs do we need to check?



Main Input: Vipers are vertebrates

Paraphrase: The viper is a vertebrate

Entailment: Vipers have brains

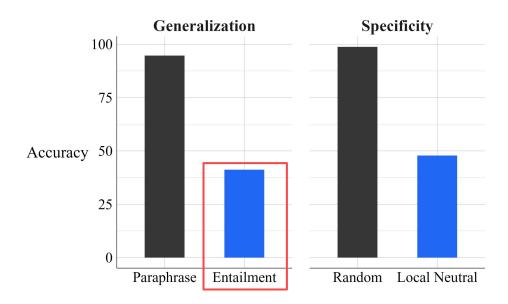
Random: Chile is a country

Local Neutral: Vipers are venomous

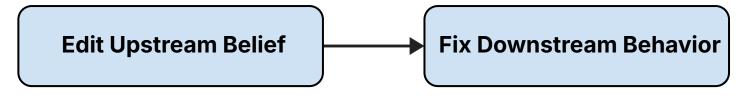
Introduced in our work

Hard Cases for Model Editing

Results with 2021 LMs



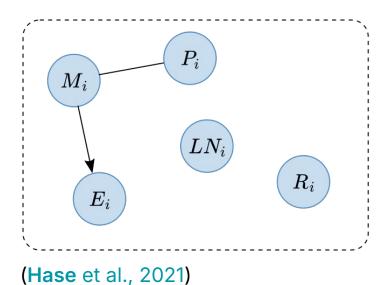
Beliefs Control Behavior



...but what is downstream?

What Is Downstream?

What inputs do we need to check?



Main Input:

Paraphrase:

Entailment:

Random:

Vipers are vertebrates

The viper is a vertebrate

Vipers have brains

Chile is a country

Local Neutral: Vipers are venomous

What Is Downstream?

Can we make this more precise?

Belief Revision

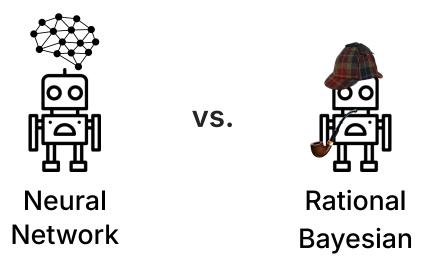
Fundamental Problems With Model Editing: How Should Rational Belief Revision Work in LLMs?

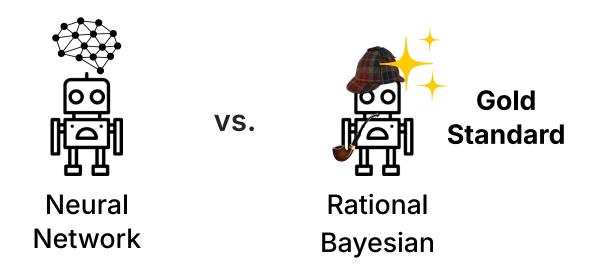
Peter Hase^{1,†} Thomas Hofweber² Xiang Zhou^{1,†} Elias Stengel-Eskin¹ Mohit Bansal¹

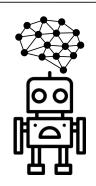
¹Department of Computer Science, UNC Chapel Hill

²Department of Philosophy, UNC Chapel Hill

TMLR 2024

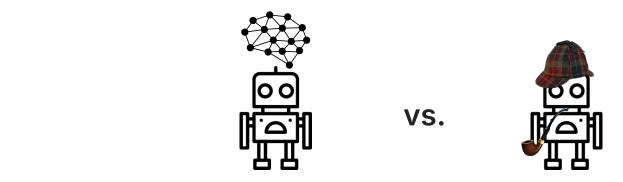


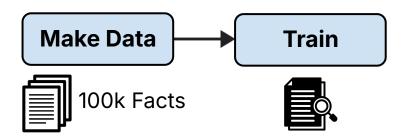


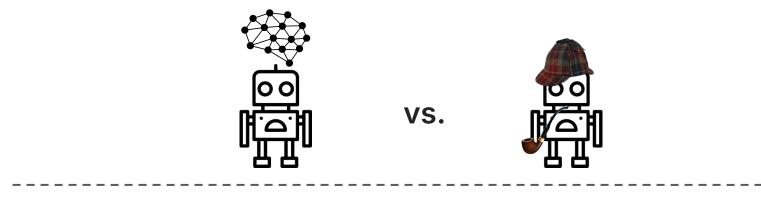


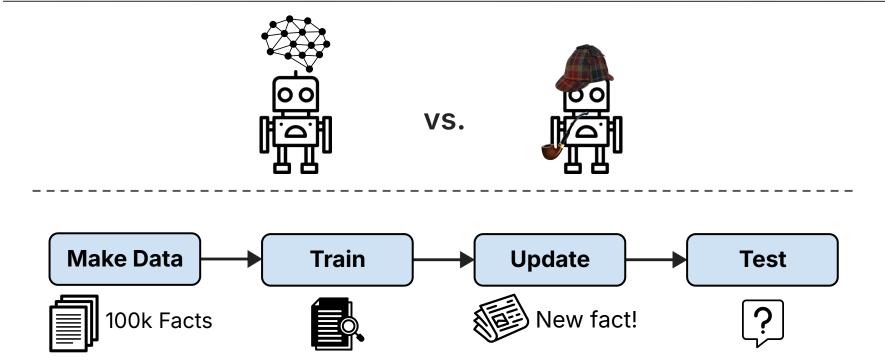
VS.

Make Data

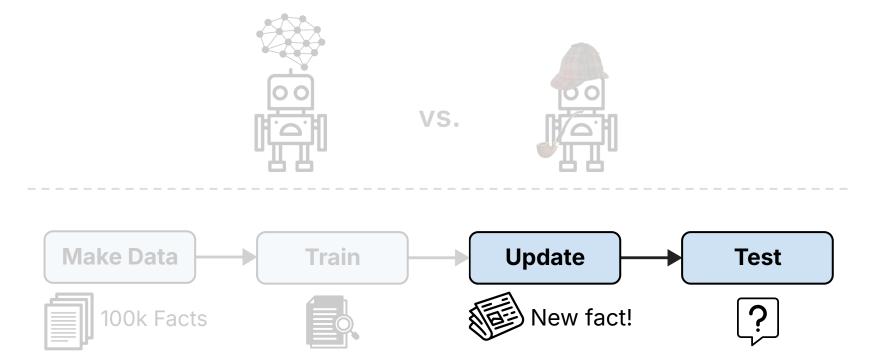




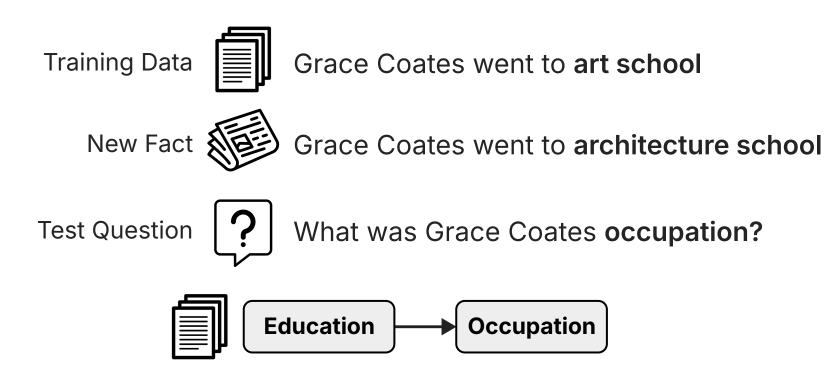




Evaluating Belief Revision



Update Then Test



Exact Bayesian Inference

Test Question

What was Grace Coates occupation?

Bayesian Model

$$p(o|s,r) = \text{Categorical}(\alpha)$$

$$\alpha \sim \text{Dirichlet}(\alpha_0)$$

$$\alpha_0 = \vec{1}$$

Posterior Predictive

$$p(o|s, r, \vec{o}) = \text{Categorical}\left(\frac{\vec{1} + \vec{o}}{\text{sum}(\vec{1} + \vec{o})}\right)$$

Conditional Distribution

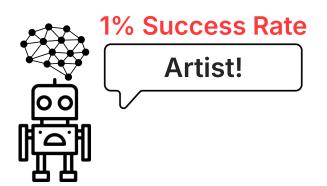
$$p(o_d|s, r_d, ext{Upstream Property}) = \sum_{o_u} p(o_d|r_d, r_u, o_u) p(o_u|s, r_u)$$

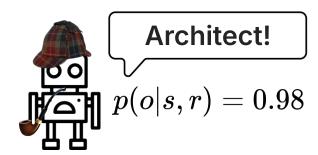
Results

Grace Coates went to architecture school

Test Question

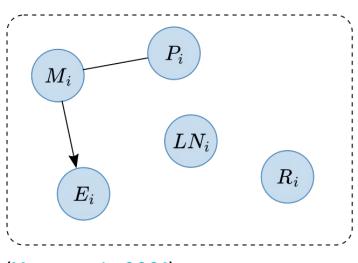
What was Grace Coates occupation?





Strengthening Our Evaluations

What inputs do we need to check?



Let's measure precisely

(Hase et al., 2024)

Main Input:

00

Vipers are vertebrates

Paraphrase:

The viper is a vertebrate

Entailment:

Vipers have brains

Random:

Chile is a country

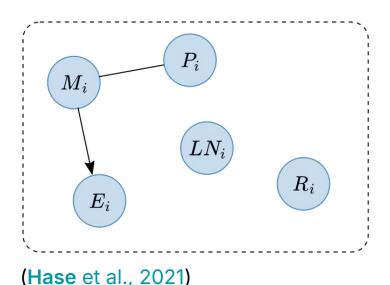
Local Neutral:

Vipers are venomous

(Hase et al., 2021)

Strengthening Our Evaluations

What inputs do we need to check?



Let's measure precisely

(Hase et al., 2024)

Main Input: Vipers are vertebrates

Paraphrase: The viper is a vertebrate

Entailment: Vipers have brains

Random: Chile is a country

Local Neutral: Vipers are venomous

Beliefs in LLMs: A Control Surface

Editing Beliefs in LLMs

(Hase et al., 2021)

Are LLMs Rational?

(Hofweber, Hase, et al., 2024)

Formalizing Belief Editing

(**Hase** et al., 2024)

Rethinking Unlearning

(Liu, Yao, ..., **Hase**, et al., 2024)

Beliefs in LLMs: A Control Surface

Editing Beliefs in LLMs

(Hase et al., 2021)

Are LLMs Rational?

(Hofweber, Hase, et al., 2024)

Formalizing Belief Editing

(Hase et al., 2024)

Rethinking Unlearning

(Liu, Yao, ..., **Hase**, et al., 2024)

Beliefs in LLMs: A Control Surface

Editing Beliefs in LLMs

(Hase et al., 2021)

Are LLMs Rational?

(Hofweber, Hase, et al., 2024)

Formalizing Belief Editing

(Hase et al., 2024)

Rethinking Unlearning

(Liu, Yao, ..., **Hase**, et al., 2024)

This Talk

From Interpretability to Control

When Interpretability Falls Short

Beliefs in LLMs: A Control Surface

Questions?

Future Directions

Interpretability Through Natural Language

Science of Beliefs in Al

Interpretability Through Natural Language

Natural language is our best interpretability method

Language is used by communities of speakers

(Hase et al., 2020)

Output Hugging is a rephrasing of embracing.

Yes.

Train LLMs to induce accurate **mental models** in other agents

- Verify these mental models with simulation tests
- Verified explanations are faithful

Science of Beliefs in Al

What will LLMsagepltsinexplain?

Dennett (1971): the intentional stance

Invoked in (Hase et al., 2021)

LLM agents should explain their beliefs and goals

- Actions
- Deductions and inferences
- Active learning

Behavior

Beliefs

+

Goals

Specific Projects

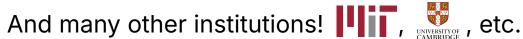
- Adversarial training for chain-of-thought faithfulness
- Model editing for self-consistent world models
- Unlearning that is robust against deductive reasoning

Connecting Back to Al Safety

Interpretable and controllable LLMs will be fundamentally safer

- Explainable goals & reasoning
- Editable goals
- Editable beliefs

Collaborators



And many other co-authors not pictured... thank you!

Thank You!

PDFs + Code:

https://peterbhase.github.io/research/

Contact Info:

Peter Hase, Anthropic peter@cs.unc.edu

https://peterbhase.github.io