
The Out-of-Distribution Problem in 
Explainability and Search Methods for Finding 

Feature Importance Explanations

Peter Hase, Harry Xie, Mohit Bansal
{peter,  fengyu.xie, mbansal}@cs.unc.edu

NeurIPS 2021



Talk Outline
● Background: Feature Importance Explanations
● Out-of-Distribution Problem in Explainability

○ Why is this a problem?
○ Proposed solution

● Out-of-Distribution Experiments
○ Verify solution effectiveness
○ Select a Replace function

● Search Methods for Feature Importance Explanations
● Explanation Method Evaluation
● Discussion & Conclusions
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Background: Feature Importance Explanations
● We have feature importance explanations of model decisions

○ (also known as salience, heatmaps, attributions, etc.)

● Example: sentiment analysis

(Ribeiro et al., 2016)
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Out-of-Distribution Problem in Explainability
● Are these features actually important to the model?
● Remove important features, check if the modelʼs predicted probability declines

○ We call the edited input a counterfactual

● This is the Comprehensiveness metric (DeYoung et al., 2020)

Typically arbitrarily chosen:
1. Delete words
2. Replace tokens with 

MASK or UNK token
3. Set embedding to 0
4. Impute words
5. Etc.

These are all out of 
distribution to a model 
trained on real data!
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● Why canʼt counterfactuals be OOD to a model?
● At least 15 papers express unease with this situation
● Arguments are generally founded in intuition or basic machine learning principles

○ Models produce “poor” or “insensible” predictions on OOD data (multiple papers)
○ Can produce “sub-optimal attributions” (multiple papers)
○ “It is unclear whether the degradation in model performance comes from the distribution shift or 

because the features that were removed are truly informative” (Hooker et al., 2019)

Out-of-Distribution Problem in Explainability

“OOD causes degradation” =
If this wasnʼt OOD, model might 
reproduce original prediction
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● But for a particular trained model, there is no ambiguity regarding the cause of this 
difference! “If this wasnʼt OOD” = if we had a different model



● We need a stronger argument for not using OOD counterfactuals when explaining a 
particular trained model

Out-of-Distribution Problem in Explainability

● We say both explanations metrics and explanations themselves are socially 
misaligned because OOD counterfactuals are regularly used to obtain explanations

● Socially misaligned: someoneʼs expectation of the kind of information that an 
explanation will communicate is not fulfilled by what it actually communicates
○ Expectation: explanation = evidence used to reach a decision
○ Reality:           explanation = evidence selected after a decision was made
○ → social misalignment

We claim that OOD counterfactuals yield socially-misaligned 
explanations and explanation metrics. (Jacovi and Goldberg, 2021)
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● An illustrative example: classify the sentiment of individual words with BERT
○ “Good” → positive
○ “Gross” → negative
○ Train BERT on a sentiment dictionary
○ Evaluate on held-out words

● Compute Comprehensiveness by replacing words with the MASK token

Out-of-Distribution Problem in Explainability

Not learned from data! 
Depends heavily on the 
model prior
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Out-of-Distribution Problem in Explainability
● People expect a feature importance explanation to reflect how the model has 

learned to interpret features as evidence for a particular decision
● People do not expect FI explanations to be influenced by the model prior (the 

designerʼs choice) or random factors (which are not meaningful)
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Out-of-Distribution Problem in Explainability
● Compute Sufficiency by replacing words with the MASK token

If this was learned from data, it 
would reflect uncertainty in the label, 
NOT the model prior.
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Out-of-Distribution Problem in Explainability
● Solution: train model on the counterfactuals it will see at explanation-time 

(Counterfactual Training)
○ Weight equally with the original data
○ Explanations can be expensive to produce (1000+ forward passes)
○ In practice, use random explanations (a good approximation in theory - Jethani et al., 2021)
○ Small hit to accuracy (0.7 points on average across six datasets)

Influenced by model 
prior, random seed

Influenced by what the model 
has learned from data
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● RQ1: Which Replace function should you use?
● RQ2: Is Counterfactual Training (CT) effective?

Out-of-Distribution Experiments
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Out-of-Distribution Experiments
● Outcome: degree of distribution shift / robustness

○ Drop in accuracy of a trained model when given Replace(x,e) inputs, using random e

● Measure for multiple Replace functions
○ Attention Mask: Set attention weight to 0 for token
○ Marginalize: Use an MLM to impute tokens, marginalize predictions over that distribution
○ MASK Token: Replace tokens with MASK token
○ Slice Out: Delete tokens from the input sequence (affects position embedding)
○ Zero vector: Replace token embedding with zero vector

● Measure for Standard vs CT models
○ BERT + RoBERTa
○ Trained on 10k train points from SNLI and SST2

● 10 seeds for everything (10 different models and sets of explanations)
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Out-of-Distribution Experiments
● If not using Counterfactual-Training, we recommend using Attention Mask or 

Mask Token
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● But Counterfactual-Training is much more important than the choice of 
Replace function

● We recommend that you use CT if you want to explain your model

Out-of-Distribution Experiments
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● Now itʼs time to assess some explanations (on both Standard and CT models)
○ Sufficiency: does keeping selected features raise the model confidence?
○ Comprehensiveness: does removing selected features lower the model confidence?

● Objective (following DeYoung et al., 2020):

Search Methods for FI Explanations

Get a set of explanations
(of varying sparsity)

Indicate features to 
keep/remove

Limit on # features
(sparsity)

Hase et al.

16

● Typically people use salience methods, which output scalar values for each feature
● Search methods are good for combinatorial optimization problems too



● Salience methods
○ LIME (Ribeiro et al., 2016)
○ Vanilla gradients (Li et al., 2015)
○ Integrated Gradients (Sundararajan et al., 2017)

● Search Methods
○ Anchors (Ribeiro et al., 2018)
○ Random Search
○ Gradient Search (similar to Fong and Vedaldi, 2017)
○ Taylor Search (similar to Ebrahimi et al., 2018)
○ Ordered Search
○ Parallel Local Search

● All methods except Integrated Gradients use the Attention Mask Replace function
● Control for compute budget: 1000 forward or backward passes per explanation

○ (exact time depends on input size and method; can take only a few seconds)

Search Methods for FI Explanations
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● Parallel Local Search:
(1) Sample a random initial explanation e and compute the objective function 
(Suff or Comp) for that explanation. 
(2) For the remaining budget of b−1 steps: sample a not-already-seen 
neighboring explanation e* and adopt e* as the new state if it is a new best 
explanation.

● Neighboring means two elements in e flip (from 0 to 1 or vice versa)
● Done in parallel r=10 threads
● Requires defining Replace(x,e)

Search Methods for FI Explanations
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● Parallel Local Search:
○ Using Attention Mask Replace function
○ Find sufficient subset of inputs in ~2 seconds

Search Methods for FI Explanations
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● Outcomes: Suff and Comp scores on Standard and CT models
● Six benchmark tasks: SNLI, BoolQ, FEVER, SST2, MultiRC, Evidence Inference
● On tasks with input=(question, document), we never Replace the question

Explanation Method Evaluation
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● PLS is best in 21 of 24 conditions (at p=.05), by up to 17.6 points over next best
● LIME is the best salience method, but it is best overall only once and is 

outperformed by Random Search on Sufficiency 9/10 times
● Suff and Comp scores are often much worse for CT models than for Standard 

models, by up to 24 points: non-CT models have inflated scores!

Explanation Method Evaluation
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● Results hold for longer sequences too (FEVER avg length: 278 vs 24.4 for SNLI)

Explanation Method Evaluation
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● Search is typically optimal on short sequences (typically <=10 tokens)

Explanation Method Evaluation
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Explanation Method Evaluation
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Discussion & Conclusions
● If you want to explain your model, train it with Counterfactual-Training

○ “Should we prefer Counterfactual-Trained models if they are harder to explain?”
○ Explanation metrics are lower for CT models because they are socially aligned
○ We want explanations to communicate what a model has learned, rather than the model prior and 

random seed 
○ Disclaimer: we canʼt guarantee that CT eliminates the influence of the model prior and random seed

● Search methods are the new SOTA for Sufficiency and Comprehensiveness
○ Across six NLP benchmarks
○ Outperforms model-based approximations and gradient-based methods

● It is very important to control for compute across methods in experiments
○ It is very rare for papers to discuss the compute budgets used in experiments
○ Results vary substantially with compute budget
○ We see performance benefits from going beyond 1000 samples (i.e. forward passes)
○ How much compute should go into explanations? 
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Summary of Algorithms
● Counterfactual Training

○ Pick a Replace function
○ Augment the training data in equal parts with Replace(x,e) pairs, using random e
○ Train on data

● Parallel Local Search
○ Use same Replace function as during training
○ Start with 10 random explanations of a specified sparsity
○ Perform 10 greedy local searches starting from each explanation
○ Return the best explanation according to the Comprehensiveness or Sufficiency objective
○ Repeat for different sparsity levels / objectives as desired
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Thank You!
Code: https://github.com/peterbhase/ExplanationSearch (includes a demo of PLS)

NeurIPS talk on YouTube: https://www.youtube.com/watch?v=OZ0fSCQ7axw&t=3s 

Contact Info:
Peter Hase, UNC Chapel Hill
peter@cs.unc.edu
https://peterbhase.github.io  
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