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Talk Outline
● Describe a vision for knowledgeable AI

○ Parametric vs. non-parametric; symbolic vs. neural

● Answer this question: “Do language models have beliefs?” (Yes)
● Pursue three goals:

○ Detecting beliefs (to catalogue beliefs)
■ Characterize beliefs
■ Measure them

○ Updating beliefs (to make them more truthful)
■ Define metrics
■ Select a method for updating beliefs + improve the method

○ Visualizing beliefs (to understand connections between them)
■ Define when there is a connection between beliefs (or dependency, correlation, etc.)
■ Visualize+summarize graphs of beliefs

● Connect back to work on explainable NLP
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A Vision for Knowledgeable AI
● We want AI systems to take actions based on a truthful understanding of the world

○ E.g., answer questions truthfully
○ While knowledge of the world is independent of good motivations…
○ Knowledge is a prerequisite for many desirable behaviors

● Parametric vs. non-parametric approaches
○ Language Models as Knowledge Bases? (Petroni et al., 2019)

■ LM stores all the knowledge in its parameters
■ Knowledge is expressed in response to textual inputs
■ AI = LM

○ Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (Lewis et al., 2020)
■ A retriever retrieves documents from a database
■ Given textual inputs and documents, an LM expresses knowledge 
■ AI = LM+retriever+database
■ Database adjustable in size and scope, independent of model parameters

Hase et al.

3



A Vision for Knowledgeable AI
● Parametric vs. non-parametric

○ Which systems are more knowledgeable?
■ Non-parametric does better on QA (Lewis et al., 2020)

○ Which systems are more easily editable? 
■ Edit LM
■ Edit LM, or retriever, or database

● Another distinction: neural vs. symbolic
○ E.g., constraint solver from “BeliefBank: Adding Memory to a Pre-Trained Language Model for a 

Systematic Notion of Belief” (Kassner et al., 2021)

● For now, letʼs focus on purely neural, parametric methods…
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Do Language Models Have Beliefs?
● What is a belief?

○ In “Do Animals Have Beliefs?” (1995), philosopher Daniel Dennett characterizes a belief as:
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An informational state decoupled from any motivational state

● On this view, even thermostats have beliefs
● But why call these things beliefs?

○ Dennett suggests that we successfully predict and explain animal behavior by means of an 
“intentionalistic” logic of belief

○ Behavior = Beliefs + Motivations

● Why not call these things knowledge?
○ Simple definition of knowledge: justified true belief
○ Might be knowledge to us, but not to them

(see also: Newen and Starzak, 2020)



Three Goals
● Detecting beliefs (to know what they are)
● Updating beliefs (to make them more truthful)
● Visualizing beliefs (to understand connections between them)
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Detecting Beliefs: Approach
● Letʼs characterize beliefs a little further (Newen and Starzak, 2020)

○ We could just look at what, for instance, a QA model says in response to the question
Q: “What did Gifford Pinchot die of?”
A: Leukemia

● We want to assess the structural properties of model outputs
○ Are they consistent under paraphrase? 
○ Are they logically consistent? 
○ Does changing one belief correctly change other entailed beliefs? 
○ Does changing one belief erroneously change other unrelated beliefs?
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Detecting Beliefs: Approach
● Letʼs characterize beliefs a little further (Newen and Starzak, 2020)

○ We could just look at what, for instance, a QA model says in response to the question
Q: “What did Gifford Pinchot die of?”
A: Leukemia

● We want to assess the structural properties of model outputs
○ Are they consistent under paraphrase? Paraphrase Consistency (Elazar et al., 2021)
○ Are they logically consistent? Entailment Consistency (Talmor et al., 2020)
○ Does changing one belief correctly change other entailed beliefs? 
○ Does changing one belief erroneously change other unrelated beliefs?

● Letʼs focus on first two questions for a moment
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Detecting Beliefs: Metrics
● We want to assess the structural properties of model outputs

○ Are they consistent under paraphrase? Paraphrase Consistency (Elazar et al., 2021)
■ Fraction of all pairs of paraphrased inputs that yield the same model output

○ Are they logically consistent? Entailment Consistency (Talmor et al., 2020)
■ When “A is true” implies “B is true”...
■ and when models predicts A is true, how often is B predicted as true?
■ Weʼll add Contrapositive Consistency

● When “B is false” implies “A is false”
● and model predicts B is false, how often is A predicted as false?
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Detecting Beliefs: Experiments
● Experiment Conditions:
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Model Dataset Type
Measure 
Paraphrase Cons?

Measure 
Logical Cons?

BART-base zsRE seq2seq QA Yes No

BART-base Wikidata5m seq2seq QA Yes No

RoBERTa-base LeapOfThought T/F classification No Yes



Detecting Beliefs: Experiments
● Experiment Results #1:
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Detecting Beliefs: Experiments
● Experiment Results #2:
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Detecting Beliefs: Conclusions
● Experiment Conclusions:

○ ~100M parameter models show limited belief-like qualities
○ Consistency scores as high as 85%, as low as 16%
○ Consistency strongly correlated with model correctness
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Updating Beliefs: Goals
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● What do we want out of a tool that lets us update model beliefs?
○ Five situations we care about



Updating Beliefs: Metrics
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● What do we want out of a tool that lets us update model beliefs?
○ Five situations we care about

■ Main Input
■ Paraphrases
■ Entailed data
■ Local Neutral data
■ Random data

○ Metrics for these types of data:
■ Update Success Rate (Main Input)
■ Update Success Rate (Paraphrases)
■ Update Success Rate (Entailed Data)
■ Retain Rate (Local Neutral Data)
■ Retain Rate (Random Data)
■ Change in Acc. (Random Data)



Updating Beliefs: Metrics
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● What do we want out of a tool that lets us update model beliefs?
○ Five situations we care about

■ Main Input
■ Paraphrases
■ Entailed data
■ Local Neutral data
■ Random data

○ Ideally, we wouldnʼt need all of this data for every point
○ Would like a tool that requires only: a model, a Main Input, and a desired output



Updating Beliefs: Approach
● An off-the-shelf solution would be to finetune the model on the Main Input
● We build on “Editing Factual Knowledge in Language Models” (De Cao et al., 2021)
● Key is to train a hypernetwork to do the updating for us:

○ Given a model, Main Input, and desired output
○ Apply hypernetwork
○ Get new model
○ Want the update to generalize from Main Input to Paraphrases, Entailed data, Local Neutral data, etc.
○ Achieve this by adding objective terms to hypernetwork objective

● Hypernetwork takes model gradient as input, yields a new “gradient”
● Method can be seen as a learned optimizer
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Updating Beliefs: Approach
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1. Embed requested update
2. Get factors for low-rank weight
3. Make low-rank weights 

A, B
4. Make a scaling factor
5. Apply weights element-wise to 

get new gradient

● Hypernetwork architecture:



Updating Beliefs: Approach
● Train hypernetwork with one objective term per metric:

○ Get desired prediction on the Main Input
○ Get desired prediction on paraphrases of Main Input
○ Get desired prediction on data entailed by desired label for Main Input
○ Minimize change in predictions on random data
○ Minimize change in predictions on local neutral data
○ Will only use the objective terms if (1) have data for them, (2) they help according to tuning results

● Some training details:
○ Use same splits as used for finetuning the task model
○ Need alternative labels for training

■ When seq2seq model correct: use random label from dataset
■ When seq2seq model incorrect: use correct label from dataset
■ On binary T/F: always use opposite label

○ Update one point, roll-back model, update next point, and so on
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Updating Beliefs: Approach
● But what if our model makes more than one mistake in its lifetime…
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Updating Beliefs: Approach
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Updating Beliefs: Experiments
● Experiment Settings:

● Three update methods per setting:
○ Off-the-shelf optimizer (AdamW or SGD)
○ KnowledgeEditor (KE), which is exact method from De Cao et al.
○ SLAG, which is our method
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Model Dataset Type
Measure 
Paraphrase Cons?

Measure 
Logical Cons?

BART-base zsRE seq2seq QA Yes No

BART-base Wikidata5m seq2seq QA Yes No

RoBERTa-base LeapOfThought T/F classification No Yes

RoBERTa-base FEVER T/F classification No No



Updating Beliefs: Experiments
● Single-update results
● Sequential-update results
● Objective term ablation
● Look at effect of updates on belief-likeness (consistency)
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Updating Beliefs: Experiments
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Updating Beliefs: Experiments
● Now update multiple points in a row before evaluating the new model

○ rtrain or rtest 

● Three conditions:
○ Baseline: Off-the-shelf optimizer
○ rtrain = 1
○ rtrain = rtest 
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Updating Beliefs: Experiments
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Updating Beliefs: Experiments
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Updating Beliefs: Experiments
● Ablation across objective terms, including:

○ Main Input term
○ Paraphrase term
○ Entailed data term
○ Random data term
○ Local Neutral data term

● Results:
○ +Paraphrase term helpful on Wikidata5m, not zsRE
○ +Entailment term not helpful on LeapOfthought
○ +Local Neutral term helpful on Wikidata5m
○ but adding objectives slightly lowers Update Success on Main Input
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Updating Beliefs: Experiments
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● Updates improve belief consistency!



Updating Beliefs: Conclusions
● About the problem:

○ When rtest = 1, high update success but model performance typically falls on other data
○ Updates generalize across paraphrases surprisingly well
○ Sequential updating much, much harder than single-update setting
○ Retaining predictions on Local Neutral data harder than on Random data
○ Additional objective terms helpful in some settings but not always needed
○ Belief updates improve model consistency!

● About which methods are best:
○ For rtest = 1, off-the-shelf optimizers are competitive with learned optimizers
○ For rtest > 1 or seq2seq, SLAG objective greatly improves performance over KE
○ For rtest > 1 and binary tasks: off-the-shelf optimizers are best
○ For rtest > 1 and seq2seq: learned optimizers are best
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Visualizing Beliefs: Approach
● Letʼs look at the connections between beliefs
● Beliefs are connected when changing one leads the other to change

○ Update belief A → observe a change in belief B

● Make a belief graph:
○ Each data point (belief) is a node
○ Edge from u to v means that changing u leads to change in v
○ Weʼll color nodes green when (original) model prediction is correct

● Letʼs look at an example for FEVER
○ Will use AdamW as update method, following experimental results
○ Update success is 100%, retain rate is 98.8%
○ Will show a non-random subgraph for illustration

Hase et al.

32



Visualizing Beliefs: Experiments
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Visualizing Beliefs: Experiments
● More quantitative summary:

○ # Nodes
○ % Edgeless
○ # Edges
○ # In-Edges at 95th percentile
○ # Out-Edges at 95th percentile
○ # Corrupted at 95th percentile (# predictions turned incorrect by an update)
○ Update-Transitivity (if changing A changes B and changing B changes C, does changing A change C?)

Hase et al.

34



Visualizing Beliefs: Experiments
● More quantitative summary:

○ All beliefs are connected to some other belief
○ 5% of beliefs highly interconnected
○ 5% of updates highly damaging
○ Limited logical consistency
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Visualizing Beliefs: Conclusions
● Hard to understand why individual beliefs are connected
● Some beliefs are extremely interconnected
● Models display limited logical consistency under updating

○ According to update methods we have currently
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Recap
● Detecting beliefs (to know what they are)

○ Look for structural properties of beliefs: logical consistency and expected invariances

● Updating beliefs (to make them more truthful)
○ Train a learned optimizer to do the updating, encode all our goals in its objective

● Visualizing beliefs (to understand connections between them)
○ Look at the graph of model beliefs. Is its “worldview” reasonable?
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Connections to Explainable NLP
● Normally I work on explainability
● Belief graphs could eventually be a good way to understand a model
● Ideally, we would explain model behavior in terms of beliefs

○ Behavior = beliefs + motivations

● Explainability is also often motivated by the promise of debugging models
● Often this looks like:

○ Detect bugs via explanations
○ Fix model by…finetuning on better data

● Sometimes explanations simplify the “finetune on better data” step
● But would be nice to have a tool that fixes bug automatically
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Thank You!
Code: https://github.com/peterbhase/SLAG-Belief-Updating 

Contact Info:
Peter Hase, UNC Chapel Hill
peter@cs.unc.edu
https://peterbhase.github.io  
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Appendix
● We want to assess the structural properties of model outputs

○ Are they consistent under paraphrase? Paraphrase Consistency (Elazar et al., 2021)
■ Fraction of all pairs of paraphrased inputs that yield the same model output

○ Are they logically consistent? Entailment Consistency (Talmor et al., 2020)
■ When “A is true” implies “B is true”...
■ and when models predicts A is true, how often is B predicted as True?

○ Does changing one belief correctly change other entailed beliefs? 
■ When “A is true” implies “B is true”...
■ and we change model prediction on A from false to true, will model predict B is true?

○ Does changing one belief erroneously change other unrelated beliefs?
■ When “A is true” does not imply “B is true” or “B is false”
■ and we change model prediction on A from false to true, does model prediction for B change?
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Appendix
● Hypernetwork takes model gradient as input, yields a new “gradient”
● But gradient is d ⨉ d  for a square layer
● So a dense linear layer on this input would have O(d4)  parameters 
● Can get down to O(2d) with rank-1 weight matrix and element-wise multiplication
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1. Embed requested update
2. Get factors for low-rank weight
3. Make low-rank weights

A, B
4. Make a scaling factor
5. Apply weights element-wise

to get new gradient
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