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Main Finding
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Model fit to 3rd grade questions almost as good as model fit to college questions

Mixtral-8x7b model, prompted with 10 examples

Hase et al.



● How will models generalize from easy train data to hard test data?
○ Easy = easy to label
○ Hard = hard to label

● Why does this matter?

  Effectively supervising models is challenging for many problems of interest

● Is easy-to-hard generalization possible?
○ Pretrained LMs have a lot of latent knowledge and skills

We Study Easy-to-Hard Generalization
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We want to
1. Understand how well models generalize based on easy data

→ maybe we only need easy data 

2. Understand how difficult the scalable oversight problem is

We Study Easy-to-Hard Generalization
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We want to
1. Understand how well models generalize based on easy data

→ maybe we only need easy data 

2. Understand how difficult the scalable oversight problem is

                            Challenging to train models when outputs are difficult to evaluate

We Study Easy-to-Hard Generalization
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(Amodei et al., 2016)

https://arxiv.org/abs/1606.06565


We want to
1. Understand how well models generalize based on easy data

→ maybe we only need easy data 

2. Understand how difficult the scalable oversight problem is
→ maybe scalable oversight is not always difficult

We Study Easy-to-Hard Generalization
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We introduce the Supervision Gap Recovered

Measuring Easy-to-Hard Generalization
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89.7

83.1
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SGR =  97%

Hard Test Accuracy vs. Train Data
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1. How Can We Measure Data Hardness? Do Different Approaches Agree?

2. Can We Do Well on Hard Data by Training on Easy Data?

3. What Are the Cost-Benefit Tradeoffs of Collecting Easy vs. Hard Training Data?

4. Is Easy-To-Hard Generalization Consistent Across Model Scale and Train-Test 
Hardness Gap Size?

Research Questions
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RQ1: How Can We Measure Hardness?
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What can we measure?
1. Education / grade level
2. Expert rating
3. Required cognitive skills
4. Question length
5. Answer length
6. Compositional reasoning steps
7. Model-based hardness

(datapoint loss w/ weaker LM)
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What can we measure?
1. Education / grade level
2. Expert rating
3. Required cognitive skills
4. Question length
5. Answer length
6. Compositional reasoning steps
7. Model-based hardness

(datapoint loss w/ weaker LM)

Data we use…
● 3rd grade to college STEM
● Compositional reasoning in math 

and general-knowledge trivia



RQ1: How Can We Measure Hardness?
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4 datasets
6 human hardness measures
1 model-based measure



RQ1: How Can We Measure Hardness?
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We use human and model-based hardness
Diverse measures, all seem to capture something about labeling difficulty



RQ2: How Good Is Easy-to-Hard Generalization?
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We need to define 
easy and hard

Hardness Measure Easy Medium Hard

ARC Grade 3-5 6-7 8

ARC Expert Difficulty 1 2 3

ARC Bloom Skill 1-2 3 4-5

MMLU Grade High School College

StrategyQA Reasoning 1-2 3 4-5

GSM8k Reasoning 2-3 4-5 6-11

Question Length, 
Answer Length, MDL

30th percentile … 70th percentile



RQ2: How Good Is Easy-to-Hard Generalization?
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Experiment Setup
● Models

○ Llama-2 models (7b, 13b, 70b)
○ Mixtral-8x7b, Llama-2 70b chat, Qwen-72b

● Training Methods
○ ICL, n≤10
○ Linear probing, n=160
○ QLoRA, n=160

● Unsupervised Baseline
○ Zero-shot prompted model (better than fully supervised weaker model)

● Results averaged over 5 random seeds



RQ2: How Good Is Easy-to-Hard Generalization?
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The Supervision Gap 
Recovered is 70-100% 
across hardness measures 

Llama-2-70b
ICL with k≤10



RQ2: How Good Is Easy-to-Hard Generalization?
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Llama-2-70b ICL with k≤10

We just saw these SGR values



RQ2: How Good Is Easy-to-Hard Generalization?
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SGR values even higher when 
testing on “all” data

Llama-2-70b ICL with k≤10



RQ2: How Good Is Easy-to-Hard Generalization?
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Easy supervision is 70-100% as good as hard supervision



RQ3: Cost-Benefit Tradeoffs of Easy vs. Hard Data
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● Previous experiments used equal amounts of cleanly labeled easy and hard data
● This is actually unrealistic
● Hard data is more expensive and labels are noisier
● What if hard data is 2x as costly to collect?
● What if hard data is 2x as noisy as easy data?

- 2x as much high school data as college data in MMLU
- Expert error rate in GPQA (grad questions) more than 2x 

expert error rate in MMLU (undergrad questions)



RQ3: Cost-Benefit Tradeoffs of Easy vs. Hard Data
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Easy training data can be
better than hard data

Llama-2-70b with
linear probe

Testing on MMLU-STEM-5
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Easy training data can be
better than hard data

Llama-2-70b with
linear probe

Testing on MMLU-STEM-5



RQ3: Cost-Benefit Tradeoffs of Easy vs. Hard Data
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Collecting easy data can be better than hard data
due to data cost and label noise



RQ4: Scaling Model Size & Train/Test Hardness

24

Hase et al.

● What happens as models get better?
● What happens as the train-test hardness gap grows?



RQ4: Scaling Model Size & Train/Test Hardness
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ICL with k=10



RQ4: Scaling Model Size & Train/Test Hardness
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When train-test gap is big enough…

SGR: 74% → 57%



RQ4: Scaling Model Size & Train/Test Hardness
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The supervision gap recovered is robust across model scale
Easy-to-hard generalization may decline with very large train-test gaps



Discussion
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● Are our tasks hard enough to provide generalizable results?
○ We personally couldnʼt annotate MMLU
○ We consider 3rd grade to college generalization

● How are the LMs actually doing this?
○ Training elicits some latent knowledge/skill that is hardness-invariant
○ Not merely learning the task format

● Why not test for knowledge/skills not in the train data?
○ Wouldnʼt that be true generalization?
○ Our aim is to elicit knowledge we suspect the model may know, without knowing it 

ourselves – not teach something new



1. How Can We Measure Hardness?
Diverse human and model-based measurements

2. How Good Is Easy-to-Hard Generalization?
Easy supervision is 70-100% as good as hard supervision

3. Cost-Benefit Tradeoffs of Easy vs. Hard Data
Collecting easy data can be better than hard data

4. Scaling Model Size & Train/Test Hardness
Results robust across model size
Huge train-test gaps could be an issue

Conclusion
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Thank You!
PDFs + code: https://peterbhase.github.io/research/ 

Contact Info:
Peter Hase, UNC Chapel Hill
peter@cs.unc.edu
https://peterbhase.github.io  

Hase et al.
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Other Work

Hase et al.
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Examples
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RQ1: How Can We Measure Hardness?
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Hardness measures do not
correlate strongly



StrategyQA

RQ1: How Can We Measure Hardness?
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Hardness measures do not
correlate strongly



RQ1: How Can We Measure Hardness?
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RQ1: How Can We Measure Hardness?
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Model-based hardness: Minimum description length (MDL) 
● (Voita and Titov, 2020)
● How “long” does it take a model to learn the datapoint?
● Average loss

○ Avg across n = {5, 20, 80, 340, 900} training points
● Training

○ Linear classifier
○ QLoRA
○ Zero-shot “MDL” with n = {0}

● Avg over some “weaker” models
○ Falcon-7b, Mistral-7b, Persimmon-8b, Llama-1-7b

https://arxiv.org/pdf/2003.12298.pdf


RQ1: How Can We Measure Hardness?
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Model performance declines
w.r.t. hardness measures

Llama-2-70b
ICL with k≤10



RQ1: How Can We Measure Hardness?
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RQ2: How Good Is Easy-to-Hard Generalization?
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RQ2: How Good Is Easy-to-Hard Generalization?
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RQ2: How Good Is Easy-to-Hard Generalization?
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RQ2: How Good Is Easy-to-Hard Generalization?
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Results robust across
training methods



RQ4: Scaling Model Size & Train/Test Hardness
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Easy is barely worse
than Medium

Llama-2-70b
ICL with k≤10



Test Data Leakage?
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Task Format Prompts - Hard Test Data
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Task Format Prompts - All Test Data

48

Hase et al.



Effect of Reasoning
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1. The baseline in SGR vs. PGR
2. We train on easy or hard data, not both
3. Human hardness variables in addition to model-based
4. All experiments with publicly available data and models (up to 70b params)
5. No early stopping
6. No new methods in our paper

Differences with Weak-to-Strong Paper
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